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1 Introduction

Very precise resolution measurements have been performed at the 1999 vertex locator
(VELO) testbeam [1, 2] that could not be reproduced at a satisfactory level by the standard
VELO simulation (implemented in the SicB package). A more detailed simulation based
on Ref. [3] and including more physics processes has been developed and agrees with
the measurement at the micron level. This note presents the basic underlying theory, the
implementation choices and approximations and some results of the simulation.

1.1 Included processes

In the presently used digitization program (SICBDST [4, 5]) the charge deposition is uni-
formly distributed along the track path and collected by the strips along straight field lines.
This geometrical model predicts much lower resolution than observed in the laboratory.
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Figure 1: Charge deposition in silicon. A track enters the silicon in x1,y;,21 and exits in
To, Y2, 20. O-rays are generated. Charge is deposited along the path of the track and the
d-rays, and drifts towards the strips. The total signal C; collected on strip i is given by all
collected charge carriers and a small fraction of the neighbour strips’ charge. Throughout this
note we consider that the silicon planes are perpendicular to the z axis and the strips parallel
to the y axis.



The present simulation is considering a local region of interest of a few strips width.
The curvature of r-strips is neglected and no boundaries are considered. It is assumed that
only one track crosses the considered area, but this is not a limitation as the total charge
of several tracks can be added. Figure 1 shows a typical area of silicon traversed by one
inclined track emitting two J-rays. We define the ~ axis to be perpendicular to the silicon
plane (as is the case in the VELO) and the y axis to be (locally) parallel to the strips which
consequently measure the x coordinate. The center of the region of interest is xt,ye, the
position of the track in the middle of the silicon layer (z¢yye = %(ml + x2) on Figure 1).

The model contains:

The emission of j-rays

Inhomogeneous charge distribution along the track

Diffusion during charge collection

Capacitive charge coupling between strips

The simulation uses a few GEANT [6] routines to simulate charge distribution smear-
ing but remains decoupled from the GEANT structures to allow a good control of every
subprocess.

To compare the results with measured data, the cluster finder algorithm used at test-
beam [1] is applied on the output data.

1.2 Modes of operation

In the simulation of the charge collection process the charge deposited on each strip is
computed. This needs as input the strip width and the readout pitch, which is usually only
known at digitization level. It is not foreseen to run the program in two steps — the first
being the simulation of physics and the second the simulation of the detector response —
as too much data would have to be saved between the two operations.

One can choose to run the program at simulation level, instead of GEANT (as was done
to simulate the VELO testbeam results) and store the digitized data. Or one can run the
simulation at digitization level, using the raw data as input. This is the mode that could
be used in the digitization program (for instance in BRUNEL). The two modes of operation
are:

The a priori mode. This is the standard way of operation of a charge deposition simula-
tion. All effects are simulated independently and added up to get the total deposited
energy.

The a posteriori mode. In this mode the total deposited energy is used as input and the
simulation tries to recover which physics processes have lead to it. This is the mode
to be selected when the simulation is used at digitization level (where the physics
simulation, for instance the GEANT based SiCBMC program, has already generated
the energy deposition in a previous run). The present note describes the simulation
from this viewpoint as it is less usual.



1.3 Structure of this note

Section 2 reviews the basic theory of charge deposition in matter. In Section 3 we discuss
the implementation and the approximations made. Section 4 shows some predictions
of the simulation. The default parameters are those of the 1999 VELO testbeam setup
but predictions are also shown for various VELO and Inner Tracker geometries in LHCb
running conditions.

2 Theoretical overview

2.1 Ionization and §-rays energies
The total energy loss rate of a charged particle traversing silicon can be written as

dEtot dEvion dE5
_ = 1
di di + di &

where F;,, is the ionization energy and Ejy is the sum of the kinetic energies of all emitted
§-rays. The infinitesimal step d! is usually expressed in units of [gcm 2] and is related to
the physical length dr by dz = pdr (the density p is given in Table 1).

Atomic number Z 14
Atomic weight A | 28.09 gmol ™!

Mean excitation energy I 175 eV

Density p | 233 g/cm3

47N 4r2m,.c? K | 0.307 MeVmol ! cm?
Number of § per keV 'g | F5 | 76.5 keVg !
Radiation length Xo | 21.82 gecm™2

Table 1: Physical constants of silicon.

The distributions of Fi,, and Fs depend on an arbitrary energy cutoff T, that is the
minimal energy for a §-ray to be considered. The restricted energy loss of a relativistic
charged particle of mass M much larger than electron mass m,, four-momentum (F, 13)
and g = £, v = £ is given by [7]

(2)

dEion 22 2 Ty 14 Lup ) _ e
Al |per, Ap? (2 I? 2 Tax 2 |

The involved physical constants of silicon are given in Table 1. T, = min(Ttyt, Timax) and
2m802ﬁ272
1+ 2ye 4 (me)?
2Rt (M)

(3

Tma.x =

is the maximal energy that can be transferred to a free electron. At high energies T}« can
be expanded in factors of y~!

1 (M m 1
T =5 |15 (504 57) +0 ()] @



which can be huge compared to typical -ray energies and usually T3, = Tinax. Figure 2
shows Ti,ax Versus the particle’s momentum for the most common particles.

The density effect correction d4e. is only important at very high energies. It expresses
the fact that the medium is polarised by the particle, which limits the field extension
(proportional to In 37) at high energies. We use Sternheimer’s parameterization of this
effect [8].

2.2 Emission of §-rays

The kinetic energy distribution of §-rays for an incoming particle of speed (3¢ and energy
FEis [7]

d®N; 1K 27 1 F(T5)

= -—Kz*— — (5)
dTsdl 2 A B2 T2
Fs
with [9]
1— 2T for spin-0 particl
F(Ty) = { %%}‘ - or sp%n : par 1'c es, )
l—7=2+ 58 for spin-5 particles.

An expression for spin-1 particles can also be found in Ref. [9] but is unlikely to be needed.
As Tiax and E are usually much bigger than Ty, the density (5) is approximately propor-
tional to T;~2. Equation (5) can be integrated to get the average number of J-rays for a
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path of length L
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Figure 3 shows the number of j-rays per cm above energy 7., for incoming pions of vari-
ous energies. For particles above 1 GeV the T}, correction is negligible and (7) becomes

(ng) ~ 2220
ng) ~
Tcut

Reasonable energy cuts T¢,; are in the range 10-100 keV, depending on the resolution of
the detector. We use Tt = 20keV as default. A high energy particle emits on average one
d-ray with energy Ts > T.,t = 20keV per millimeter of silicon.

The total energy Ej lost to §-rays is

Tmax

dE; >N Fs [ Tmax 5 Tup

% _ [ S parn =22 | _2 (12w ), 8

al / aTsdl ' T 32 [n Tup B T ®)
Tup

Adding up equations (2) and (8) and respecting the sign convention defined in (1) one
recovers the well known Bethe-Bloch formula [10]

=K22~— |-In

_dEtot Z 11 2m6026272Tmax . 52 . ddec
al A3 |2 iE 2

] : )

The evolution of Fi., Ej,, and Fs with the momentum of the incoming particle is shown
in Figure 4.

For thin silicon layers the total lost energy Fi, is about Landau distributed (with a
larger width because in silicon electrons are bound rather than free as assumed by the
Landau theory [11, 12]). For thicker layers the energy loss cannot be neglected compared
to the particle’s energy and the Vavilov [13] description has to be used. At low energies
the Bethe-Bloch equation has to be corrected with some experimental factors [7]. In the
scope of this simulation we use the data from [14] shown in Figures 5 and 6 to predict the
stopping power.

The recoil angle # of the ¢-ray depends only on the energy E of the incoming particle
and the kinetic energy T [15]

2
6 = acos ( E A+ mec Ts ) . (10)

VE?2 — M2cA NV Ts + 2mec?

The distribution of this angle versus Ty is shown in Figure 7. The more probable low-
energy J-rays are emitted almost perpendicularly to the track.

The range of a low-energy electron in silicon is shown in Figure 8. Electrons of few
hundred keV can travel more than 100 ym in silicon and thus affect the resolution.
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Figure 4: Stopping power of silicon for pions versus log;, 37y. The three curves show the total
energy loss (9), the restricted energy loss (2) and their difference corresponding to the energy
imparted to §-rays. A cut Ty = 20keV is applied.
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Figure 5: Stopping power of protons in sil-
icon. Data from [14].

2.3 Effect of §-rays on resolution

Figure 6: Stopping power of electrons in
silicon. Data from [14].

The emission of §-rays affects the reconstructed position in two ways
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Figure 9: Resolution degradation due to a Figure 10: Resolution degradation due to
long range j-ray. charge deposition inhomogeneity.

Shift due to long range d-rays Long range §-rays can artificially enlarge the cluster size.
Approximating the energy deposition along the §-ray path of length Rs by a uniform
distribution and considering an incoming track that is perpendicular to the silicon



plane we can estimate the shift in the reconstructed position

1 .
—T5R5 sin 6
ATy) ~ 222 11
(T5) Tt B (11)
where we added a correction due to the ¢’s angle # (given by equation (10)) com-
pared to the estimate suggested in Ref. [11].

This situation is illustrated in Figure 9. One can estimate contribution of j-rays of
energy Ty to the overall resolution by multiplying the resolution shift A(7Tj) by the
probability %‘;Ndl. Figure 11 shows that §-rays around 100 keV contribute most to
the resolution smearing!. This effect affects more perpendicular tracks than inclined
tracks.

Shift due to inhomogeneous charge distribution For inclined tracks, the effect on reso-
lution is dominated by the charge deposition inhomogeneity due to the §-ray.

The most probable energy deposition in a 300 um thick detector is about Ei,, = 80
keV. The emission of a Ty = 20 keV J-ray traveling only a few microns and starting
at one end of the track increases the deposited charge around this location and shifts
the cluster center accordingly. This is illustrated in Figure 10. Neglecting the range
of the §-ray, the resulting shift can be estimated by

E5 |AZ5| .
SIn & (]- 2)
Eion %6

A(Ts) ~

where Az is the vertical distance from the emission point of the §-ray to the center
of the silicon layer, © is the thickness and « is the angle of the track.

2.3.1 Tracking and charge deposition of J-rays

The behaviour of low energy particles is very difficult to predict. GEANT uses the common
Moliére [16, 17] description of multiple scattering. This model assumes

1. that the angular deflections in single collisions are small,
2. that the medium is homogeneous on the path length .

Within these limitations the width of the (about Gaussian) angular deflection projected on

a plane is [7]
13.6 MeV l [ 1
0= ——— — |14 0.0381In — | = —=6P*°,
° Bep Z\'Xo[ - nXo] v2'°

For silicon this becomes

45
Oy ~ W\/l [¢m] [0.57 4+ 0.038 In (x [pm])].

Figure 12 shows this angle versus the energy and the path length /. For energies below 100
keV both assumptions cannot be fulfilled simultaneously. A 20 keV electron for instance is
deflected by 0.1 rad in 1 A, which is less than the size of an atom.

'Note that when the §-range is much bigger than the strip-pitch it becomes likely that two clusters are
formed, one located at the incoming track’s position and the other around the end of the § path.
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2.4 Diffusion of primary ionization charge

In an n-type silicon detector with p-type strips (p-on-n) the holes drift to the strips and
the electrons to the backplane. In an n-on-n detector, the collected charge carriers are
electrons.
The average drift velocity v; (i = e, h) is proportional to the electric field E (parallel to
the z axis)
U; = Miﬁ (13)
The mobility p; is strictly speaking depending on doping concentration. For concentrations
below 10'¢ donors/cm? the mob111t1es of electrons and holes are given in Table 2 The total
charge collection time ¢ = #
near the backplane. The visible charge on a strip is the integral over the shaping time of

Thickness ] 300 pm
Biasing Voltage v 100 V
Electric field E 3300 Vem ™!
Mobility of holes fn 450 cm?/Vs
Mobility of electrons pe | —1400 cm?/Vs
Collection time of holes th 20 ns
Collection time of electrons to 7 ns
Temperature kT 0.025 eV
Lateral diffusion of holes on(0) 7 pm
Lateral diffusion of electrons | 0.(©) 7 pm

Table 2: Typical numerical values of some parameters.



the collected current given by Ramo’s theorem [18]. When this shaping time is larger
than the drift time, only the charge carriers reaching the considered strip contribute to the
signal.

The charge collection is affected by the lateral diffusion of the charge carriers which
follows a Gaussian distribution of width o(Az) = /2Dt;(Az). The diffusion coefficient
Dis

D = k—TMi
q

and t;(Az) is the time of the drift on a distance Az. Hence the diffusion width for a charge
carrier created at distance Az from the strip is

T OA
0.(Az) = 2%@‘/2‘ (14)

2.5 Charge sharing between strips

In silicon microstrip detectors the capacitive (or sometimes resistive [19]) coupling of
neighbouring strips causes a charge sharing between them. Even when the whole charge
drifts to a single strip, a small fraction of the signal may be seen on the neighbouring strip.
When the main cause for charge sharing is the capacitive coupling between strips, the
value of this fraction only depends on the inter-strip and strip-to-backplane capacitances.
For a detailed prediction of the charge sharing a simulation of the electronic structure of
the silicon detector may be helpful. In the frame of this local model we assume that the
charge sharing fraction f is constant over the whole detector. The signal S; collected on
strip i is

Si =€ [(1=2f)Ci + f(Cim1 + Ciy1)] (15)

where C; is the charge deposited on strip 7 and ¢; the charge collection efficiency in this
strip. We assume that ¢; ~ 1 and hence from (15)

Yoosi= Y G

detector detector

In Ref. [1] the fraction f has been measured considering high-energy tracks passing in-
between two strips. The results are

Fe (5.3+£0.3)% for 40 pm strip pitch
| (47+02)% for 60 ym strip pitch

These small values are typical for detectors where all strips are read out. Bigger charge
sharing fractions around 30% arise in detectors with floating strips.

3 Implementation

As this simulation includes a description of the strip geometry it must be called in the same
run as the digitization.

10



3.1 Ionization and §-ray energies

The ionization energy Ej,, is sampled using GLANDZ [6]. This routine uses equation (2)
and adds some fluctuations.
The production of ¢-rays depends on the mode of operation.

A priori mode: The number of §-rays N; is sampled using a Poisson distribution of mean
(ng) (equation (7)). The energy of each ¢-ray is generated using the method de-
scribed in Section 3.1.1.

A posteriori mode: The simulation uses the already simulated entry and exit points of
the track and the deposited energy Ei.; and tries to recover what has happened in
the detector. The total energy of all § rays is estimated as:

Eé = Etot - Eion-

When FEj is smaller than the energy cutoff T, no ¢-rays are produced and the
ionization energy is reset to Ej,, = FEiot. The number of §-rays is found using Bayes’
theorem as explained in Section 3.1.2.

3.1.1 Generation of the §-ray’s energy

The generation of the energy distributed as (5) is done using the variable change

Uy = T%. (16)
Equation (5) transforms to
fl_ﬁ - i—];f j—ii - Lng%F(l/u(;) a7
with
1
Tog = et 2 U§ > Umax = T

and F'(Ty) is defined in (6). The distribution is generated using the throw-awaymethod.
Two uniform-distributed random numbers 7, and 7. (0 < r; < 1, 7 = 1,2) are generated
and the value

Us = T'1Ucut

is calculated. The inverse kinetic energy u; is accepted if F'(1/us) < ro. The efficiency of
this trial is close to 100% as usually uyax < Ueut-

3.1.2 Generation of the number of §-rays

The probability P <N5 =n[>n, Ts :E5> of emitting n J-rays knowing their total energy
Ej is shown in Figure 13. The probability of emitting more than one ¢-ray remains small
even when the total energy of all §-rays is large.

In the simulation of testbeam results [1] a naive procedure, generating d-rays accord-
ing to distribution (5) until the available total energy Ej is reached was used. This leads

11
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to a huge number of §-rays for high total energies and hence over-estimates the resolution
smearing for tracks depositing a very high energy in the silicon. A more reliable approach
is described below.

It is possible to compute the energy probability density for any given number of j-rays
and then to recover the probability distribution of N; at fixed total energy using Bayes’
theorem. d Knowing the total energy >, Ts = E; of all emitted é-rays one generates the
number of §-rays using the probabilities

P | Ns=n|Y Ts=E; | =P (Ns=n) fu(1/Ej). (18)
Ns

The functions f,,, their derivation and the approximations made are given in Appendix A.
They are defined in the range 0 < E%s < 77— and normalized on that range. The probabil-
ities P (Ns=mn) are given by a Poissonian distribution of mean (ns) that is given by (7).

Figure 14 compares the distributions of the total energy Ej for various number of
d-rays in the a priori and a posteriori modes using equation (18).

Using the probabilities P (N5:n| DN T5:E5> the generation of Nj is straightfor-
ward. The kinetic energies of the N5 — 1 first §-rays are generated according to the pro-
cedure explained in Section 3.1.1 while the energy of the last §-ray is fixed in order to
reach the total energy Ej. If this energy is not between T.,; and Ty, the energies of
the previous §-rays are generated again. This causes a negligible bias on the §-ray energy
distribution.

The initial position and azimuthal angles with respect to the track of the j-ray are
uniformly distributed.

12



3.2 Tracking and primary ionization

The incoming track and the §-rays are tracked in small steps (O (1 ym)) along their path
in the silicon. No multiple scattering is applied to the incoming track as it is negligible
inside the silicon layer. Moliere scattering is applied to §-rays with energy above Ty.,;s =
O (100 keV). At lower energies, a probability that the j-ray stops in each step depending
on its kinetic energy is calculated using the experimental model describing the attenuation
of electrons in matter as v/ N o L, where N is the number of electrons that reach a depth
L.

The energy lost by the particles in each segment is sampled using the GEANT rou-
tine GLANDZ. For the incoming particle the ionization energy deposited in each segment is
renormalised in order to sum up to the total ionization energy Ej,,.

3.3 Diffusion

The energy deposited in each segment is converted into electron-hole pairs and the charge
carriers are collected into the strips following the (straight) field lines adding some hori-
zontal diffusion. The fraction of the charge collected in each strip is

1 ozt
fl = — e 20% d.’I; (19)
ous
Ti—5—p/2

where z; and p are the center position and the pitch of strip i, and (x5, ys, 2;) is the middle
position of the segment. The diffusion width o, defined in equation (14) depends on the
drift distance z — z.

This procedure improves the simulation described in References [3, 19] by spreading
the charge over all strips rather than assigning the total charge of a segment to one single
strip. Yet this model is not strip-length independent since all the charge of a segment is
put onto its center before diffusion. This is reasonable only for segments that are much
smaller than the resolution of the detector.

3.4 Charge sharing

The total charge collected by each strip is obtained as sum of the contributions of all
segments of the track and the ¢-rays. The charge is shared with the neighbouring strips
following equation (15).

4 Simulation results

The present simulation was developed in order to reproduce the testbeam results. The
parameters of the simulation are given in Table 3. In Section 4.1 we present the predic-
tions of the simulation using these settings and confront them with experimental values.
Section 4.2 describes the effects which contribute to the resolution: diffusion, §-rays and
charge sharing. In Section 4.3 we describe an algorithm which corrects the position de-
termination from finite strip dimension effects. Section 4.4 and 4.6 show the expected
resolutions and cluster sizes with the preferred VELO and Inner Tracker geometries and
settings at LHCb.

13



VELO Inner

Parameter Testbeam  Optimized TDR Tracker
Type p-on-n n-on-n n-on-n n-on-n
Thickness z 300 pym 220 pm 300 pym 300 pym
Pitch (r) p 40-100 pm | 20-40 pm | 40-60 pm 235 pm
Charge sharing fraction | f 4.7-5.3 % 5.0 % 5.0 % 5.0 %
Biasing Voltage V 80V 40V 0V 100 V
Temperature kT 0.025 eV 0.025 eV 0.025 eV 0.025 eV
Signal to noise ratio S/N 50 15 20 20
Threshold C 15 5 5 5
Incoming particle ut T T ot
Particle’s Energy E 120 GeV | 1-100 GeV | 1-100 GeV | 1-100 GeV

Table 3: Default values used in the simulation. Three VELO geometries are considered:
The testbeam geometry as used in the 1999 testbeam run [1], the optimized VELO geom-
etry [20] and the TDR baseline solution [21]. The Silicon Inner Tracker geometry is described
in Ref. [22].

4.1 Resolution with VELO testbeam settings

In this section we present the predictions of the simulation using the settings and detector
geometry of the autumn 1999 VELO testbeam run given in Table 3. We compare the
resolution measured in the laboratory with the prediction of the simulation.

The same cluster finder algorithm is used in both cases. It is described in Ref. [1]. It
essentially looks for strips with a very high signal compared to the measured noise and
checks for neighbours with a high signal. A cluster can contain up to 5 strips.

At testbeam, the word “resolution” refers to the width of the distribution of the ex-
trapolated position of a track and the closest weighted cluster center. The contribution of
multiple scattering and alignment to the resolution is estimated to be about 1 um. It has
to be added in quadrature with the contribution from the detector — 5 to 30 yum— and
can hence be neglected.

In the simulation we call “resolution” the rms of the zcy — Zirue distribution where
zcoMm is the weighted center of the cluster and z,,. the Monte Carlo true position of the
track in the center of the silicon layer. Such a distribution is shown in Figure 21. The same
clustering algorithm as at testbeam is used in the simulation. It is described in Ref [1].

The relevant angle for the study of inclined tracks is the projected angle of the track
in the z—z plane (see Figure 1). This angle is called projected angle in Ref. [1] and simply
angle in this note. In the figures we plot the variables of interest versus the slope as the
behaviour of charge collection depends on this variable. As the angles are small, the
distinction is not of great importance.

The track angle distribution covers the range from 0 to 240 mrad but is peaked at
some values around 20, 80, 120 and 200 mrad. In the simulation a flat angle distribution
was used for all plots. Thus only angle-independent variables or distributions of variables
versus angle can be used to compare the simulation with the experimental values. All
distributions that are integrated over the whole slope range cannot be directly compared .

The simulation of charge deposition does not contain a description of electronic noise.

2Except for the Landau distribution that depends on the slope very weakly and where a good agreement
was found.
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Figure 15: Resolution of perpendicular tracks versus pitch in the VELO testbeam conditions
(left side). A linear fit is performed. The experimental data taken from [2] is shown on
the right side for comparison. The curves agree within statistical errors.

We have added a Gaussian noise to every strip such that the most probable signal to noise
ratio is S/N = 50 as measured in testbeam. See [23] for a detailed description of the noise
in the detectors used in the 1999 testbeam.

4.1.1 Resolution of perpendicular tracks versus pitch

At the autumn 1999 testbeam the resolution for perpendicular tracks at various strip
pitches has been measured [2]. This analysis has been performed using mainly p-detectors.
Figure 15 shows the simulated and measured data. A linear behaviour of the resolution
versus the pitch is observed in the range of tested pitches. The equations of the linear fits
are:

resolution = (0.2543 + 0.0030) - pitch — (4.906 + 0.179) (Testbeam) (20)
resolution = (0.2556 + 0.0014) - pitch — (4.943 + 0.094) (Simulation). (21)

They agree within errors.

The two measurements of the resolution using r-detectors at pitches of 40 and 60 ym
are about one micron above the measurement using the ¢-detectors. There seems to be a
better resolution in ¢ than in r. This is not yet understood.

4.1.2 Cluster size and resolution versus slope

One of the distributions of interest is the distribution of cluster sizes versus the slope. This
is very sensitive to diffusion and charge sharing. The simulated and measured distributions
are shown in Figure 16. They agree within errors.

The agreement of the resolution versus the slope is less striking. The simulated curves
shown in Figure 17 underestimate the resolution by about 1 pm both for 40 ym and 60
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Figure 16: Fractions of 1, 2, 3 and 4 or 5 strip clusters versus slope for 40 and 60 ym
strip pitches in VELO testbeam conditions. Left: simulation. Right: Measured data taken
from [1].

pum strip pitches. This difference is compatible with the observed r-¢ discrepancy (see
Section 4.1.1).

4.2 Effect of diffusion, charge sharing and §-rays

Figure 18 shows the contribution of diffusion, charge sharing and §-rays to the resolution
versus slope. The curve obtained with all effects switched off starts at a resolution of about
pitch/\/12 for perpendicular tracks and decreases with increasing slope. A minimum is
reached at slope = pitch/thickness = 0.13. This behaviour is about what is coded in the
present digitization scheme (used in SICBDST).

4.2.1 Diffusion

When diffusion is added the resolution becomes much better for low angle tracks and then
tends towards the previous curve. The reason for this improvement is the lower number
of 1-strip clusters, which contain little information about the position of the track. In the
range of usable voltages (O (100) V) the resolution becomes better at lower voltages.

4.2.2 ¢-rays

The presence of j-rays hardly affects the resolution of low-angle tracks. The effect is more
pronounced for high angle tracks and reaches about two microns. This case reflects the
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strip pitches (bottom). The simulated resolution is compared to the measured residual.
The expected resolution using an 7-fit is shown for comparison (see Section 4.3).

inhomogeneous charge deposition when §-rays are emitted (see section 2.3).

The dependence of the resolution on the energy cutoff T¢,; was found to be very weak
around the default value of T,,; = 20keV. At much higher cutoff values §-ray emission is
inhibited and the resolution becomes better. At T.,; = O (1keV) the approximation of the
d-ray range is not valid anymore.

4.2.3 Charge sharing

Charge sharing has three distinct consequences on resolution:

1. It causes a dilution of the signal, reducing the S/N of the central strip and hence
affects the efficiency in presence of high noise.

2. The sharing of the central strip signal with its neighbours decreases the probability of
1-strip clusters for perpendicular tracks, which can slightly increase the resolution.
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The fraction of 1-strip clusters versus charge sharing is shown on Figure 19 and
compared to the measured fractions and sharing.

3. Figure 20 shows how charge sharing corrects the center of mass position in the case
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of two strip clusters: Perpendicular tracks that are ex-centered with respect to the
center of the crossed strip 7 deposit the main part of the charge in strip and a small
amount due to diffusion in the next (left) neighbouring strip i — 1. The center of
mass of the resulting two-strip cluster is then very close to the center of strip 7, which
badly reflects the true position of the track. Charge sharing gives a small part of the
charge in strip i to strip i+ 1, which corrects the “unfairness” of lateral diffusion. The
non-linear behaviour of the charge fractions and hence of the reconstructed center-
of-mass with the true entry point can be corrected by using an 7-fit, as described in
Section 4.3.

Adding up these contributions, the overall effect is positive for low angle tracks and be-
comes negligible at high angles.

4.2.4 A posteriori versus a priori mode

Because of the approximations made in the J-ray generation (see Section 3.1.2) the av-
erage number of J-rays is overestimated by 10% in the a posteriori mode and the inverse
energy distribution of the ¢-rays is cut off at low values (high energies). The net effect on
the Landau shape, the resolution and the cluster sizes is negligible.

4.3 Resolution improvement using an n-fit

In all previous sections the resolution is computed comparing the center-of-mass of the
cluster ¢y with the Monte Carlo true position e Of the track in the middle of the
silicon layer. This is a good approximation of the track position when its slope is not
known. The distribution of xcn — #4pe 1S Shown in Figure 21 for almost perpendicular
tracks. Introducing

n—1
> iC;
— Zn:_ol (22)
> Ci
=0

where S; is the signal in strip i = 0...n — 1 of a n-strip cluster, one has

oM = pi). (23)
For 2-strip clusters 7 is
So
= . 24
1= 5+ 5 (24

The z,4e versus n-fit curve is shown in Figures 23 and 24 for two and three-strip clusters
caused by almost perpendicular tracks. The definition of zc\ is equivalent to approxi-
mating this curve by a straight diagonal line. The distribution in Figure 21 reflects the
difference between the true position and this approximation. A fit to this curve leads to a
set of functions

ay = FP™ () (25)
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at fixed slope « and pitch p. The curve is well described by a polynomial of the form

3
xn:wMgﬂv”)(n—z1>+bgp’”><n—”21) . (26)

where the parameters aﬁf ) and bg” ") are to be determined by a fit to the simulated data.

For every cluster size and slope range we perform fits to polynomials of the order 3 and
5 and keep the fit with the lowest x? per degree of freedom. In the case both x? are too
high, the fit is redone cutting off the extreme points of the distributions. If no convergence

20



is got the center of mass is used instead. In the case of Figure 23 a polynomial of 5th order

is fit in the whole 7 range while in Figure 24 a polynomial of 3td order is fit in the range
0.4-1.6.

The resulting residual distribution z,, — 2y is shown in Figure 22 and the overall res-
olution versus the slope is shown on Figure 17. The n-fit increases the resolution by about
1 pm for perpendicular tracks and the effect is non-negligible for slopes up to the optimal
slope around 100 mrad. This procedure allows some correction of the bias introduced by
charge sharing and diffusion but the resolution is still affected by §-rays and noise.

This correction can only be done once the track is found and its slope known. For the
first iteration in the pattern recognition algorithm zcy; has to be used.

4.4 Resolution in the VELO

The optimized VELO geometry differs from the testbeam setup by a lower thickness (220
versus 300 pum) and smaller pitches (down to 20 ym). The expected S/N ratio running
at 40 MHz is in the range 10 to 20 rather than 50. The consequences are bigger clusters
and a worse resolution (both because of noise). The expected resolutions are shown in
Figures 25 for the optimized design and 26 for the baseline scenario.

At identical pitches, the resolution measured at testbeam is better because of the very
high signal-to-noise ratio.

The clustering algorithm will be challenging in the optimized detector. In 20 pm-pitch
strips only 50% of the total charge is deposited on average in the central strip. This fraction
decreases with increasing angle. The S/N ratio of the central strip becomes thus about 8,
causing inefficiencies and loss of resolution. This effect is visible on the resolution curve
for angles above 200 mrad.

4.5 Analogue versus binary readout

The effect of analogue and binary readout on resolution has been studied for the Technical
Proposal using a less developed version of the simulation [3]. We reproduce here the
results for the TDR geometry and using the latest version of the simulation described.

In a binary readout scheme, the data would be zero-suppressed on the front-end chip
and only a list of hit strips would be send to the ODE. Thus the granularity of the clustering
would be of pitch/2. Figure 27 shows that the resolution is almost flat versus noise. Is is
above the

A 2-bit and 4-bit digital readout scheme is also presented. In such a scheme, the
data would be digitized on a dynamic range of 4 and 16 respectively. This improves the
granularity to pitch/8 and pitch/32 respectively.

4.6 Resolution in the Inner Tracker

In the Inner Tracker a good resolution is only marginally important for physics but may
be a good help to the pattern recognition for the high energy tracks where little multiple
scattering is expected.

Figure 28 shows the expected resolution in a single silicon Inner Tracker layer. As most
clusters are single-strip, the resolution is only marginally better than pitch/v/12 = 68 ym
for low-angle tracks.
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A Expected number of J-rays

0.3
slope

he parameters are

In the a posteriori mode of the simulation, one would like to know the distribution
P (Nj|Es) of the number of d-rays knowing their total energy E;. This can be solved
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using Bayes’ theorem

P (Ns|E;) = I35 (Eo) P (Ns) (27)

[=(E;5)
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where fn;(FEs) = f(FE;|Ns) is the density of the total energy deposited by Ns d-rays. The
distribution of the total energy Ej given to j-rays is

fo(Bs) = > P (Ns) f(Es|Ns). (28)

N5=1

These densities f(E;s|Ns) follow from the probability density f1(75) = f(E5|Ns=1) of the
energy of one d-ray (see section 2.2). The distribution f,(Z = X +Y) = f(Z|Ns=n) with
frn-1(X) = f(X|Ns=n—1)and f1(Y) = f(Y|Ns=1) is
min((n—l)TmamZ—Tcut)
fn(Z=2)= / foo1(X=z)f1(Y =2 —z)dx (29)
max((n—1)Teut,2—Tmax)

provided the densities f,_1(X) and f;(Y") are not correlated, which is not true when z or y
becomes large and the particle looses a significant amount of its kinetic energy. In principle
this correlation can be taken into account by updating T,.x and g in f1(Y") accordingly.

This direct procedure unfortunately leads to non-analytical expressions. The situation
is easier to handle when the inverse energy distribution is used.

A.1 Inverse energy distribution of n §-rays

The same procedure as described above is applied to the inverse energy distribution us =
1/Ty. The probability density function for this variable follows from (17)

0 s < Umax
fi(us) = Ky (% _uzl—;x> ~ Ky Umax < Us < Ucnt (30)
0 Ueut < Ug

where eyt = 1/Teut, Umax = 1/Tmax and K; is a normalization constant

1

Ucut

/fl(U5)dU5 =1 = Ky ~
0

From this point the flat low-energy approximation fi(us) = 1/ucyt for umax < us < eyt 1S
used.

Two random variables X and Y representing the inverse total energies of any number
of §-rays do not add up but

1_1+1 _ v X7
Z X Y CX-Z

The distribution f,,(Z =7z) of the inverse energy of n ¢-rays (n > 2) becomes

min “Cut7 Zumax
n—1’umax—2

zZr

fn(Z=2) = K, / fo1(X=2)f1 (Y: >d$ (31)

r—z

max umax7 ZUcut
n—1 ucyt—=2
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where K, is a normalization and the limits are defined by the validity ranges of the func-

tions f,_1

and f;

Umax < Y =

Umax <z< Ucut
n—1 n—1
ZUcut ZUmax
e = < g g Smex
xr — Z Ueut — % Umax — <

(i)

These limits define three ranges in z corresponding to three functions féi) (2), fn ' (2)

and £ (2)

ZUumax
Umax—*%

Umax < UcutUmax
Kn un!;x fn_l (.’L') dz n <zs Umax+(n_1)ucut
n—1
ZUmax
Umax—*%
UcutUmax < UcutUmax
Kn zu{;t fni]‘ (LE) d$ Umax+(n—1)ucut <z - (n_l)umax+ucut
Ucut—*%
Ycut
n—1
UcutUmax < Ucut
Kn zu{;t fn_l (.’L') d.’I;' (nfl)umax‘Fucut <z - n
Ucut —*

AS Ucyt > Umax, for a small number of §-rays one has

UcutUmax
(n - I)Umax + Ucut

X Umax,

and hence only the function f,(Lm)(z) is defined in the validity range of the low-energy
approximation. Thus it is sensible to approximate the density function of n §-rays by
f,S""“ (z). This function does not depend on -

Applying this procedure one gets the following functions f,(z) defined in the range

0<2§%
f1(2)
f2(2)
f3(2)

fa(z)

1
(32)
Ucnt
Ucut — 22
(33)
U(Ucut - Z)(l - IOg 2)
2 (Ucut —3z+ (Ucut - Z) log %) (34)

(2 —log %)Ucu‘c (Ueut — 2)

1 1 —
<2ucut — 82 + (Ueys — 2) log [L] (35)

Ucut 2(Ucut - Z) 3(ucut — 32)

2(then; — 2) Ueut — 22
9 o 1 — — 7| —2z1 o o
+ (ucut Z) 0g |:3(Ucut _ 22) #1708 Q(Ucut - 32)

The functions f; to f3 are normalized. f; is not normalizable analytically. For n > 4
there is no analytical solution anymore. A numerical analysis shows that these function
tend towards a linear shape when the average number of emitted §-rays is small. In the
simulation we use a linear approximation for n > 3

Fulz) = 2n (1— ne ) (36)

Ucut Ucnt,
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