
Particle Interactions 



Heavy Particle Collisions 

• Charged particles interact in matter. 

– Ionization and excitation of atoms 

– Nuclear interactions rare 

 

• Electrons can lose most of their energy in a single 

collision with an atomic electron. 

 

• Heavier charged particles lose a small fraction of 

their energy to atomic electrons with each collision.  



Energy Transfer 

• Assume an elastic collision. 

– One dimension 

– Moving particle M, V 

– Initial energy E = ½ MV2 

– Electron mass m 

– Outgoing velocities Vf, vf 

 

• This gives a maximum energy 

transfer Qmax. 
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Relativistic Energy Transfer 

• At high energy relativistic 

effects must be included. 

 

 

 

 

• This reduces for heavy particles 

at low g, gm/M << 1. 

22

22

max
//21

2

MmMm

mV
Q




g

g

Typical Problem 

• Calculate the maximum energy 

a 100-MeV pion can transfer to 

an electron. 

 

• mp = 139.6 MeV = 280 me 

– problem is relativistic 

•  g = (K + mp)/ mp = 2.4 

 

• Qmax = 5.88 MeV 
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Protons in Silicon 

• The MIDAS detector measured 

proton energy loss. 

– 125 MeV protons 

– Thin wafer of silicon 

MIDAS detector 2001 



Linear Energy Transfer 

• Charged particles experience multiple interactions 

passing through matter. 

– Integral of individual collisions 

– Probability P(Q) of energy transfer Q 

 

 

 

• Rate of loss is the stopping power or LET or dE/dx.  

– Use probability of a collision m (cm-1) 
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Energy Loss 

• The stopping power can be 

derived semiclassically. 

– Heavy particle Ze, V 

– Impact parameter b 

• Calculate the impulse and 

energy to the electron. 
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Impact Parameter 

• Assume a uniform density of 

electrons. 

– n per unit volume 

– Thickness dx 

 

• Consider an impact parameter 

range b to b+db 

– Integrate over range of b 

– Equivalent to range of Q 

• Find the number of electrons. 

 

 

• Now find the energy loss per unit 

distance. 
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Stopping Power 

• The impact parameter is related 

to characteristic frequencies. 

 

• Compare the maximum b to the 

orbital frequency f. 

– b/V < 1/f 

– bmax = V/f 

 

• Compare the minimum b to the 

de Broglie wavelength. 

– bmin = h / mV 

• The classical Bohr stopping 

power is 
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Bethe Formula 

• A complete treatment of stopping power requires 

relativistic quantum mechanics. 

– Include speed b 

– Material dependent excitation energy   
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Silicon Stopping Power 

• Protons and pions behave 

differently in matter 

– Different mass 

– Energy dependent 

MIDAS detector 2001 



Range 

• Range is the distance a particle 

travels before coming to rest. 

 

• Stopping power represents 

energy per distance. 

– Range based on energy 

 

• Use Bethe formula with term 

that only depends on speed 

– Numerically integrated 

– Used for mass comparisons 
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Alpha Penetration 

Typical Problem 

• Part of the radon decay chain 

includes a 7.69 MeV alpha 

particle. What is the range of 

this particle in soft tissue? 

 

• Use proton mass and charge 

equal to 1. 

– Ma = 4, Z2 = 4 

• Equivalent energy for an alpha 

is ¼ that of a proton. 

– Use proton at 1.92 MeV 

• Approximate tissue as water 

and find proton range from a 

table. 

– 2 MeV,  Rp = 0.007 g cm-2 

 

• Units are density adjusted. 

– Ra = 0.007 cm 

• Alpha can’t penetrate the skin. )()()(
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Electron Interactions 

• Electrons share the same 

interactions as protons. 

– Coulomb interactions with 

atomic electrons 

– Low mass changes result 

 

• Electrons also have stopping 

radiation: bremsstrahlung 

 

• Positrons at low energy can 

annihilate. 
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Beta Collisions 

• There are a key differences between betas and heavy ions in matter. 

– A large fractional energy change 

– Indistinguishable  from e in quantum collision 

 

• Bethe formula is modified for betas. 
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Radiative Stopping 

• The energy loss due to 

bremsstrahlung is based 

classical electromagnetism. 

– High energy 

– High absorber mass 

 

 

 

• There is an approximate 

relation. 

-(dE/dx)/r in water 

 

   MeV cm2 g-1 

Energy  col rad 

1 keV  126 0 

10 keV  23.2 0 

100 keV  4.2 0 

1 MeV  1.87 0.017 

10 MeV  2.00 0.183 

100 MeV 2.20 2.40 

1 GeV  2.40 26.3 
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Beta Range 

• The range of 

betas in matter 

depends on the 

total dE/dx. 

– Energy 

dependent 

– Material 

dependent 

 

• Like other 

measures, it is 

often scaled to 

the density. 



Photon Interactions 

• High energy photons interact with electrons. 

– Photoelectric effect 

– Compton effect 

 

• They also indirectly interact with nuclei. 

– Pair production 



Photoelectric Effect 

• A photon can eject an electron 

from an atom. 

– Photon is absorbed 

– Minimum energy needed 

for interaction. 

– Cross section decreases at 

high energy 
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Compton Effect 

• Photons scattering from atomic 

electrons are described by the 

Compton effect. 

– Conservation of energy and 

momentum 
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Compton Energy 

• The frequency shift is 

independent of energy. 

 

• The energy of the photon 

depends on the angle. 

– Max at 180° 

 

• Recoil angle for electron related 

to photon energy transfer 

– Small   cot large 

– Recoil near 90° 
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Compton Cross Section 

• Differential cross section can be 

derived quantum mechanically. 

– Klein-Nishina 

– Scattering of photon on one 

electron 

– Units m2 sr-1 

 

• Integrate to get cross section 

per electron 

– Multiply by electron density 

– Units m-1 
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Pair Production 

• Photons above twice the 

electron rest mass energy can 

create a electron positron pair. 

– Minimum  = 0.012 Å 

 

• The nucleus is involved for 

momentum conservation. 

– Probability increases with Z 

 

• This is a dominant effect at high 

energy. 
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Total Photon Cross Section 

• Photon cross sections are the sum of all effects. 

– Photoelectric , Compton incoh, pair k 

J. H. Hubbell (1980) 

Carbon Lead 


