An object at rest explodes into three fragments. (Figure 1) shows the momentum vectors of two of the fragments. What is $p_{-} x$; $p_{-} y$ of the third fragment?

$$
\begin{aligned}
& \text { So P1 + P2 + P3 }=0 \\
& \text { P3 }=-\mathrm{P} 1-\mathrm{P} 2
\end{aligned}
$$

get the components of each, negate and add
$P 1 x=-2$
P1y $=+2$
$\mathrm{P} 2 \mathrm{x}=+3$
$P 2 y=0$

$$
\begin{aligned}
& \text { P3x }=-(-2+3)=-1 \\
& \text { P3y }=-(2+0)=-2
\end{aligned}
$$

Figure 9.9. Problem 39P
$\mathrm{m}_{\mathrm{m}}=\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}=5 \mathrm{~m}_{1}$

$$
m_{1}=\frac{m}{5}
$$

$$
x=m_{1} \nabla_{1}-m_{3} \nabla_{3} \cos (\theta)=m_{2} \nabla_{2}-m_{3} \nabla_{3} \cos (\theta)=0
$$

$$
p_{y}=m_{2} v_{2}-m_{3} v_{3} \sin (\theta)=0
$$

These two equations can be rewritten in the following manner

$$
\begin{aligned}
& \cos (\theta)=\frac{m_{2} \nabla_{2}}{m_{3} \nabla_{3}} \\
& \sin (\theta)=\frac{m_{2} \nabla_{2}}{m_{3} v_{3}}
\end{aligned}
$$

These two equation can be combined to give

$\tan ([$ theta $])=1$
or
$[$ theta $]=45 \mathrm{deg}$.
The velocity of the third fragment can now be obtained easily

$$
v_{3}=\frac{m_{2} v_{2}}{m_{3} \cos (\theta)}=\frac{m_{1} \nabla_{2}}{3 m_{1} \cos (\theta)}=14 \mathrm{~m}^{\prime} / \mathrm{s}
$$

