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Abstract

We calculated the 4-momenta of the daughter particles of the decay

process 0 ! 1 + 2 in the rest frame of the parent particle 0 and in

the lab frame. The result has been applied to ⇤ ! p⇡ and X ! ⇤

¯

⇤

decays.

0 ! 1+2 decay in the rest frame of 0 In the rest frame of the particle 0,
the 4-momentum of the particles are related by P = p1+p2 where P = (M,~0).
Hence, we can write p2 = P � p1, we obtain

p22 = (P � p1)
2 = P 2 � 2P · p1 + p21,

m2
2 = M2 � 2ME1 +m2

1 ) E1 =
M2 +m2

1 �m2
2

2M
,

E2 = M � E1 ) E2 =
M2 +m2

2 �m2
1

2M
.

From p1 =
p

E2
1 �m2

1 and p2 =
p
E2

2 �m2
2, where p1 = |~p1| and p2 = |~p2|,

we have

p1 =

p
(M2 +m2

1 �m2
2)

2 � 4M2m2
1

2M
,

p2 =

p
(M2 +m2

2 �m2
1)

2 � 4M2m2
2

2M
.
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⇤ ! p⇡ decay Given that m⇤ = 1.115683 GeV, m
⇡

= 0.1396 GeV and
m

p

= 0.938 GeV, we have

E
p

=
m2

⇤ +m2
p

�m2
⇡

2m⇤
= 0.943 GeV,

E
⇡

=
m2

⇤ +m2
⇡

�m2
p

2m⇤
= 0.172 GeV,

p
p

=
q

E2
p

�m2
p

= 0.1 GeV,

p
⇡

=
p

E2
⇡

�m2
⇡

= 0.1 GeV

in the rest frame of ⇤.

X ! ⇤⇤̄ decay In the rest frame of X, we replace m1 and m2 by m⇤. In
addition, we know that Q2 = �(p⇤ � p⇤̄)

2 and by symmetry E⇤ = E⇤̄ and
~p⇤ = �~p⇤̄. Hence we have Q = |p⇤|+ |p⇤̄| = 2p⇤ and we obtain

E⇤ = E⇤̄ =
M

2
,

p⇤ = p⇤̄ =
1

2

q
M2 � 4m2

⇤ =
Q

2
.

We have Q2 = �(p⇤ � p⇤̄)
2 = M2 � 4m2

⇤ where M is the invariant mass
of X.

Boosting 0 ! 1+2 decay to the lab frame Assuming particle 1 decays
with an angle ✓ with 0 in the rest frame of 0.

E0
1 =

M2 +m2
1 �m2

2

2M
,

E0
2 =

M2 +m2
2 �m2

1

2M
,

p01x = �p02x = p01 sin ✓
0,

p01z = �p02z = p01 cos ✓
0.

Now, we assume particle 0 has momentum P in the lab frame. We boost
the particles to the moving frame of 0,
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E =
p
P 2 +M2,

� =
E

M
,

v =
P

E
.

Using Lorentz transformation, we obtain

p1x = p01x = p01 sin ✓
0,

p1z = �(p01z + vE0
1),

tan ✓1 =
p1x
p1z

.

Similarly,

p2x = p02x = �p01 sin ✓
0,

p2z = �(p02z + vE0
2),

tan ✓2 =
p2x
p2z

.

⇤ ! p⇡ decay We replace P by p⇤, M by m⇤, E1 by E
p

, E2 by E
⇡

, p1 by
p
p

and p2 by p
⇡

.

E⇤ =
q
p2⇤ +m2

⇤,

�⇤ =
E⇤

m⇤
=

p
p2⇤ +m2

⇤

m⇤
,

v⇤ =
p⇤
E⇤

=
p⇤p

p2⇤ +m2
⇤

.
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Hence, the decay angle ✓
p

in the lab frame is given by

p
px

= 0.1 sin ✓0
p

GeV,

p
pz

= �⇤(0.1 cos ✓
0
p

+ 0.943v⇤) GeV,

tan ✓
p

=
p
px

p
pz

=
0.1 sin ✓0

p

�⇤(0.1 cos ✓0
p

+ 0.943v⇤)
,

p
p

=
q

p2
px

+ p2
pz

,

p
⇡x

= �0.1 sin ✓0
p

GeV,

p
⇡z

= �⇤(�0.1 cos ✓0
p

+ 0.172v⇤) GeV,

tan ✓
⇡

=
p
⇡x

p
⇡z

=
�0.1 sin ✓0

p

�⇤(�0.1 cos ✓0
p

+ 0.172v⇤)
,

p
⇡

=
p

p2
⇡x

+ p2
⇡z

.

The functions have been plotted in Figure 1 and Figure 2.

Figure 1: ✓
p

vs ✓0
p

distribution from 0 to
180 degrees for p⇤ = 0.4 GeV.

Figure 2: ✓
p

vs ✓0
p

distribution from 0 to
180 degrees for p⇤ = 1.2 GeV.
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Example 1 For p⇤ = 0.4 GeV, we have �⇤ = 1.062 and v⇤ = 0.337. We
obtain

tan ✓
p

=
0.1 sin ✓0

p

1.062(0.1 cos ✓0
p

+ 0.943⇥ 0.337)

=
0.942 sin ✓0

p

cos ✓0
p

+ 3.178
,

p
p

=
q

p2
px

+ p2
pz

=
q

(0.1 sin ✓0
p

)2 + 1.128(0.1 cos ✓0
p

+ 0.318)2,

tan ✓
⇡

=
�0.1 sin ✓0

p

1.062(�0.1 cos ✓0
p

+ 0.172⇥ 0.337)
,

=
0.942 sin ✓0

p

� cos ✓0
p

+ 0.58
,

p
⇡

=
p

p2
⇡x

+ p2
⇡z

=
q

(�0.1 sin ✓0
p

)2 + 1.128(�0.1 cos ✓0
p

+ 0.058)2.

For ✓0
p

⇠ 0, we have cos ✓0
p

⇠ 1 and sin ✓0
p

⇠ 0,

p
p

⇠
p
1.128⇥ 0.418 = 0.614 GeV

p
⇡

⇠
p
1.128⇥ 0.042 = 0.045 GeV.

For ✓0
p

⇠ ⇡

2 , we have cos ✓0
p

⇠ 0 and sin ✓0
p

⇠ 1,

p
p

⇠
p
0.12 + 1.128⇥ 0.3182 = 0.35 GeV

p
⇡

⇠
p
0.12 + 1.128⇥ 0.0582 = 0.12 GeV.

For ✓0
p

⇠ ⇡, we have cos ✓0
p

⇠ �1 and sin ✓0
p

⇠ 0,

p
p

⇠
p
1.128⇥ 0.218 = 0.232 GeV

p
⇡

⇠
p
1.128⇥ 0.158 = 0.167 GeV.
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Example 2 For p⇤ = 1.2 GeV, we have �⇤ = 1.469 and v⇤ = 0.732. We
obtain

tan ✓
p

=
0.1 sin ✓0

p

1.469(0.1 cos ✓0
p

+ 0.943⇥ 0.732)

=
0.681 sin ✓0

p

cos ✓0
p

+ 6.903
,

p
p

=
q

p2
px

+ p2
pz

=
q

(0.1 sin ✓0
p

)2 + 2.158(0.1 cos ✓0
p

+ 0.69)2,

tan ✓
⇡

=
�0.1 sin ✓0

p

1.469(�0.1 cos ✓0
p

+ 0.172⇥ 0.732)

=
0.681 sin ✓0

p

� cos ✓0
p

+ 0.857
,

p
⇡

=
p

p2
⇡x

+ p2
⇡z

=
q

(�0.1 sin ✓0
p

)2 + 2.158(�0.1 cos ✓0
p

+ 0.126)2.

For ✓0
p

⇠ 0, we have cos ✓0
p

⇠ 1 and sin ✓0
p

⇠ 0,

p
p

⇠
p
2.158⇥ 0.79 = 1.16 GeV

p
⇡

⇠
p
2.158⇥ 0.026 = 0.038 GeV.

For ✓0
p

⇠ ⇡

2 , we have cos ✓0
p

⇠ 0 and sin ✓0
p

⇠ 1,

p
p

⇠
p
0.12 + 2.158⇥ 0.692 = 1.02 GeV

p
⇡

⇠
p
0.12 + 2.158⇥ 0.1262 = 0.21 GeV.

For ✓0
p

⇠ ⇡, we have cos ✓0
p

⇠ �1 and sin ✓0
p

⇠ 0,

p
p

⇠
p
2.158⇥ 0.59 = 0.87 GeV

p
⇡

⇠
p
2.158⇥ 0.226 = 0.33 GeV.
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Summary From Example 1 and Example 2, it has been shown that the
kinematics of the daughter particles in the lab frame depends heavily on the
kinematics of the parent particle as well as the decay angle. In the case of
the decay process ⇤ ! p⇡, ⇡ always has lower momentum than p in the lab
frame. With a track reconstruction p

T

threshold, say 0.15 GeV, events are
removed unevenly in the decay angle phase space, with more events removed
when ✓0

p

is close to 0 due to the lower momentum of ⇡. This may explain
why the correlation introduced by the detector e↵ect alone, without any con-
tribution from the spin correlation e↵ect, produced the observed structure
when plotted as a function of Q and why the reconstructed decay angle dis-
tribution is skewed to the negative side.

P.S. For simplicity, we did not first boost ⇤ and ⇤̄ to the center-of-mass
frame for the helicity basis.
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