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Galilean Principle of Relativity

Reference frame – a set of 3 spatial coordinates (e.g. x,y,z) and a time coordinate t.

Space and Time in Classical Mechanics:

Space – uniform and isotropic.
Time – uniform and absolute (the same in both IRFs and non-IRFs).

Inertial reference frame (IRF)
(inspired by experimental observation & their existence is postulated by the 1st Newton’s Law): 
it’s the frame where bodies removed from interaction with other bodies will maintain 
their state of rest or of uniform straight-line motion.

Practical definition of IRF: 
a frame that moves with a constant velocity relative to very distant objects, e.g. 
distant stars. 

Significance of IRFs: 
Newton’s Laws have the same form in all these frames 
(the laws are invariant under the coordinate transformations that transform one IRF into another one).

Galilean Principle of Relativity (1632) “The laws of classical mechanics are 
invariant in all inertial reference frames”



Newton’s Laws (1687)

First law

It is possible to select a set of reference frames, called inertial reference frames, in which a 
particle moves without any change in velocity if no net force acts on it.                                  
This law is often simplified into the sentence: "A particle will stay at rest or continue to move 
at a constant velocity unless an external unbalanced force acts on it."

Second law

Observed from an inertial reference frame, the net force on a particle is proportional to the 
time rate of change of its linear momentum: F = d (mv) / dt. Momentum mv is the product 
of mass and velocity. Force and momentum are vector quantities and the resultant force is 
found from all the forces present by vector addition.                                                               
This law is often stated as: "F = ma: the net force on an object is equal to the mass of the 
object multiplied by its acceleration."

Third law

Whenever a particle A exerts a force on another particle B, B simultaneously exerts a force on 
A with the same magnitude in the opposite direction. The strong form of the law further 
postulates that these two forces act along the same line.       
This law is often simplified into the sentence "Every action has an equal and opposite 
reaction."



Galilean transformations
Galilean Transformations - The IRF transformations that preserve 

“invariance” of Newton’s Laws
(Newton Laws are invariant under Galilean transformations)
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Importance of vectors in classical mechanics

Invariant:    Let’s formulate a physical law as A=B. 
If a coordinate transformation affects neither A nor B, we say that this law is              
invariant under the transformation.

Galilean transformation do not affect the length of a vector 

⇒ the length of a vector is invariant under Galilean transformation
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⇒if one can formulate a law that looks like “vector” = “vector”, 
it automatically means that this law is invariant under Galilean transformation

All laws of classical physics must have the following forms to be invariant under Galilean 
transformation:

“scalar A” = “scalar B” “vector A” = “vector B”

⇒ if one side of an equation is a scalar (vector), the other side must also be a scalar 
(vector) to satisfy Galilean Principle of Relativity.



Maxwell’s Equations: challenge to Galilean PR

0

0 0 0

/

0

E

B

BE
t

EB J
t

ρ ε

µ ε µ

∇⋅ =

∇⋅ =

∂
∇× = −

∂
∂

∇× = +
∂

r

r

r
r

r
r

0 0 2

1
c

ε µ =

In 1873, Maxwell formulated Equations of Electromagnetism. 
• Maxwell’s Equations describe very well all observed 

electromagnetic phenomena
• they are not invariant under Galilean transformations !?
Few remarks:
• there is a built-in asymmetry: a charge in motion produces a   

magnetic field while a charge at rest does not
• it follows from Maxwel equations that 

the speed of light is the same in all IRFs
at odds with Galilean velocity addition. 

This asymmetry triggered an idea of a unique stationary RF (ether), with 
respect to which all velocities have to be measured, and where Maxwell  
equations can be written in their usual form. 
However, the famous Michelson-Morley experiment (1887) did not 
detect any motion of the Earth with respect to the ether.
How one could proceed?
At least one of the following statements must be wrong: 
(a) the principle of relativity applies to both mechanical and electromagnetic phenomena
(b) Maxell equations are correct 
(c) Galilean transformations are correct  



Einstein’s Principle of Relativity

Einstein (1905) assumed that (a) and (b) are correct & postulated:

The first postulate of the Special Theory of Relativity: 
“The laws of physics are the same (covariant) in all IRFs”

Covariance is less restrictive than invariance: 
Let A=B. 
If, under RF transformation, both A and B are transformed into A’ and B’, but still 
A’=B’, than the law is covariant. 

One of the consequence of Einstein’s Principle of Relativity (being applied to Maxwell’s 
Equations): the speed of light in vacuum is the same in all IRFs and doesn't depend 
on the motion of the source of light or an observer
(in line with the experimental evidence that the ether does not exist). 
However, this applies to all (not necessarily e.-m.) phenomena. 
Therefore:

The second postulate: 
“The speed of light in vacuum is the same for all inertial observers,                    

regardless of the motion of the source”

⇒ Maxwell’s Equations are in line with Einstein’s Principle of Relativity. 
Conclusion: 
• Galilean Transformations based on the idea of universal and absolute time are wrong! 
• Consequently, the laws of mechanics have to be modified 

to be covariant under new (correct) transformations.



The class of transformations that maintain the covariance of Maxwell’s equations 
were derived by Lorentz (1904) (though Lorentz suggested that the ether wind 
physically compresses all matter in just the right way to conceal the variations of c in 
Michelson-Morley experiment, he still believed in absolute time).

Lorentz Transformations
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- let’s consider two inertial frames S & S’

S : Origin O, coordinates x,y,z and time t
S′: Origin O′, coordinates x′,y′,z′ and time t′

S′ moves with constant velocity along x axis of S
at time t=t′=0 the origins O and O′ coincide

∗ at t=0 a light flash is produced in O
⇒ a spherical wave with radius R develops in frame S

a spherical wave with radius R′ develops in frame S′

⇒ is the same in both frames



Lorentz Transformations

⇒ (1)

laws of nature are the same in S and S′⇒ x′ and t′ are linear functions of x and t

⇒

(2)



Lorentz Transformations

(1) & (2)

Final result: (Lorentz Transformations)



Linearity of Lorentz transformations reflect the fact that: 
• the space is uniform and isotropic
• the time – uniform.

For small V<<c (β<<1, γ~1) 
– Lorentz transformations are reduced to Galilean transformations:
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Lorentz Transformations

A flash of light occurs at x = 1m, y = 1m, z = 1m, 
and ct = 1m (so t = 3.3×10-9s). 
Locate this event in the primed RF, which moves 
at V/c=0.6 to the right.
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Relativity of simultaneity

One of the striking consequences of Einstein’s postulates in the relativity of simultaneity.

Two events that are simultaneous in one IRF are not, in general, simultaneous 
in another. 

K – the rest reference frame of the car. For an observer in this IRF, light from the bulb in the 
middle of the car reaches the car ends (events (a) and (b)) simultaneously. 

K' – the ground reference frame. For this observer these two events are not simultaneous: 
as the light travels from the bulb, the train itself moves forward, and thus, event (a) happens 
before event (b). 

(a) (b) (a) (b)

K

K′

Second postulate: the speed of light is the same in all IRFs!



Time dilatation

The proper time (interval), ∆t0 - the time interval between two events occurring at the      
same position as measured by a clock at rest 
(with respect to these two events).

“Light-clock”:
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Second postulate: the speed 
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We want to know the time interval 
between the same two events 
occurring at the same position as 
measured by (synchronized) 
clocks in a moving reference frame:
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The time interval measured in the moving system K' is 
greater than the time interval measured in system K 
where these two events occur at the same place (the 
proper time is the minimum time interval).



Time dilatation

light on light out Proper time interval:
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To observe this effect, the relative speed of the 
reference frames should be large. For the fastest 
spacecraft, the speed is ~10-4c, and the effect is 
of an order of 10-8:
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Obviously, the same results stems directly from Lorentz transformations:
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Consequences of the relativity principle
• an event is completely defined by a space-time coordinate set

• Lorentz transformations between two frames S & S′ tells how a 
moving observer (S′) would observe and event described by an
observer (S) in the rest frame of an event

• moving clocks run slower

82.994 10 / 0.998 0.998v m s c β= × = =N0– the number of muons 
generated at high altitude

N – the number of muons 
measured in the sea-level lab
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By ignoring relativistic effects (wrong!), we get the decay length: 
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In fact, the decay length is much greater, the muons can be 
detected even at the sea level!

~20 km

Because of the time 
dilation, in the RF of the 
lab observer the muon’s 
lifetime is:
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Muons are created at high altitudes due to collisions of fast cosmic-ray particles (mostly protons) 
with atoms in the Earth atmosphere. 
Muon – an electrically charged unstable elementary particle with a rest energy ~ 207 times greater than
the rest energy of an electron. The muon has an average half-life of 2.2 ×10-6 s. 
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Consequences of the relativity principle

• moving rods shrink in length along the line of motion

• quantity  [(c·time)2 – radius2] is the same in both frames

• physical laws are the same in any inertial frame

• Only requirements for S and S′:
S and S′ should be in uniform relative motion



4 - Vector

A convenient and consistent method to denote an event

• contravariant location 4-vector xµ (µ = 0,1,2,3)

• frequently used notation:

• covariant location 4-vector xµ (µ = 0,1,2,3)

• dot product:

⇒

• the scalar: is invariant for all inertial frames



4 - Vector

• corespondence between contra- and covariant 4-vectors

- summation convention

where metric tensor

⇒ different sign for the dot productsome authors use different metric 

Lorentz transformation in 4-vector notation:



4 - Vector

• inverse Lorentz transformation:
∗ exchange the primes ( ′ )
∗ replace β by -β

→→

• some definitions using the metric gµν :

• Lorentz transformation can be written in matrix notation:

∗ Easy to include rotations in the transformation



4 - Vector

• frequently used notations:

• Choise of O = O′ at t = t′ = 0 was very special 
→ allows comparison of absolute coordinates x, x′, …

• In general one measures differences in time and location
∗ general form of the invariant quantity:

• In most general differential notation:
∆s = invariant “4-dimentional separation” of two events

(ds)2 defines the metric of space-time and thus all properties 
(including the Lorentz transformations)



4 - Vector

• Let’s define:

Timelike separation → dτ = invariant time difference

∆τ is the time difference measured by a comoving clock

This time is called the proper time

• Particle moving with velocity u  in the inertial frame S→

dx̃
old fashion: 

⇒ this u does not transform as a 4 vector~• d x transforms as a 4-vecor but also dt transforms ~

A invariant time is necessary → use dτ

definition of  4-velocity

The norm of u is invarint~



4 - Vector

• Leads to new expression for addition of velocities 

- Frame S′ moves with uniform vx relative to frame S
- Particle moves with velocity u′x′ relative to S′ (x||x′)

∧

∧ ∧ ∧

Inverse Lorentz transformation gives u



4 - Momentum

• Is this 4 – momentum invariant ?

• What mean its components ?

∗ New relativistic definition of p : extra factor γu
→

• What is the physical meaning of p0 ?

It’s an energy!



4 - Momentum

(rest energy)

• Definitions:
Total Energy : E
Rest energy : E0

Kinetic energy : T

µ
→ allow to develop Relativistic Dynamics



Minkowski metric; rapidity

• contravariant location 4-vector xµ (µ = 0,1,2,3)

• covariant location 4-vector xµ (µ = 0,1,2,3)

• an alternative description of Lorentz transformation is  
based on the Minkowski trick of introducing an imaginary 

time x4 = it

• Lorentz invariant becomes:

• The transformation which leaves this expression invariant is a rotation. 
A rotation in (x1,x4) plane is:

• In a real world these can be written:



Minkowski metric; rapidity

using the identities:

Taking y=iα the real form of Lorentz transformation is recovered:

- -

To be equivalent with:

⇒ y must be real and α imaginary

→ the price paid for a familiar Euclidean form of the rotation in
(x1,x4) plane is an imaginary rotation angle

The real quantity y defined above is called rapidity of the transformation:

In ultrarelativistic regime, when particle mass can be neglected, i.e. E=p:



Collisions’ kinematics

The de Broglie relationship between wavelength and momentum p is:

λ =h/p

⇒ λ =2πħc/pc = 2π × 197 MeV fm/pc

where p is in MeV/c

For an electron with p = 1 GeV/c

λ = 2π × 197/103 = 1.2 fm or 1.2 × 10-15m

Since a proton is ~1 fm in size, 

a 1 GeV electron will see the whole proton



Collisions’ kinematics

For an electron with p = 100 GeV-c:

λ = 2π × 197/105 = 0.012 fm or 1.2 × 10-17m

a 100 GeV electron will be able to probe 
inside the proton and scatter off the quarks 
inside

⇒

Increasing Energy Decreasing the probe size⇒



Collisions’ kinematics

• Consider only pointlike particles

• Take into account all external effects
- Friction → heat production

radiated off  → particles (photons) moving away

1. Within one reference frame Ptotal is conserved (energy and momentum conservation)
~

2. Among reference frames in uniform relative motion  P2
total is invariant

~

• Let’s consider two particles, each with mass m and velocity v = 3/5c
head-on collision & stick together

∗ before collision :

⇒ The final partice is at rest



Collisions’ kinematics

∗ after collision :

∗ Kinetic energy converted into rest energy !

∗ Classical: Ekin↔ “internal energy” (potential, heat, …)

∗ Relativistic: All “internal ” forms of energy are reflected in
the rest energy of the complete system

• Let’s consider a proton and neutron at rest forming a deuteron with binding energy B

∗ proton-neutron system :

∗ deuteron :



Collisions’ kinematics

• Remaks :

1. B reflects the Epot in the proton-neutron system

2. Inside the p – n system B is a separate component

3. Deuteron system as a whole → B reflected in rest energy

4. At least energy B needed to break-up the deuteron
→ the deuteron is a stable system

• In a laboratory E and p of a particle are measured→



Two body decay

• A pion (π) which is at rest decays into muon (µ) and a massless neutrino (ν)

∗ Simple solution :

- Before decay :

- After decay : c

⇒



Two body decay

Since:

∗ Let’s use invariants :

|



Two body decay of unstable particle in flight
(c=1) !!!

mother particle P = (E,0,0,p), 
daughter particles p1 = (E1,p1⊥,p1z ) and  p2 = (E2,p2⊥,p2z )

due to momentum conservation

let’s label the kinematical variables in CMS with asterisks

and similarly for particle 2

v = p/E and γ = E/M
the problem is solved. ⇒ one could find now the angles which the two 

daughter particles make with the z axis and with 
each other as function of the mother particle

(Exercise 1)

Lets solve the problem starting from energy-momentum conservation



Two body decay of unstable particle in flight
Reality of p1 → (M2p*2 – m1

2p2sin2θ1) ≥ 0
- condition satisfied for all θ1 if Mp*/m1p > 1
→ lower sign must be rejected since otherwise 
p1 gets unphysical negative values for θ1 > π/2

- if Mp*/m1p < 1 → there is a maximum value of θ1

sinθ1 max = Mp*/m1p → both signs must be kept:
for each value of θ1 < θ1 max there are two values of p1 and
correspondingly for p2

Exercise 2: derive p1 expression from the previous page
Exercise 3: for the following decay processes:
i. Ko

S → π+ π -

ii. Λ0 → pπ -

iii. π 0   → 2γ
assuming 1 GeV LAB energy for the mother particle in each case:

- find the maximum Lab angles θ and corresponding  momenta for all decay products
- show that the minimum opening angle between the decay products correspond to a

CMS angle of 900 with the flight direction of the mother particle and calculate the 
corresponding LAB momenta

- if a daughter particle makes half of maximum angle, find the corresponding two
momenta and two momenta and LAB angles of other daughter particle



Three-body decays; Dalitz plot

Consider the decay of mother particle M into three particles m1, m2 and m3

Their corresponding 4-momenta are    P                                p1, p2 and p3 

Energy-momentum conservation  →

Let’s define the following invariants:

Which is their physical significance ?:

-s1 = (p2 + p3)2 → (s1)1/2 is the invariant mass of the subsystem of particles 2 and 3
- Similarly (s2)1/2 and (s3)1/2 are the invariant masses of subsystems (3,1) and (1,2)

They are not independent:



Kinematical limits

In case of three particle decay arises the question of the limits of kinematical variables

phase space – the space spanned by any set of independent kinematical variables

- with this definition one could say that we are deriving the boundaries of phase space 

Let’s consider the decay process in the rest frame of the mother particle (CMS):

with E1 = (m1
2 + p1

2)1/2 , p1 is the CMS momentum of particle 1, → E1 ≥ m1, therefore:

In order to find min s1 , it has to be evaluated in the rest frame of subsystem (2,3) – Jackson frame
The kinematical variables in this frame are denoted by a little zero above de symbol

⇒



Kinematical limits

where Kinematical function is defined:

α Is the angle between p1 and p3

⇒ s2 depends on α if s1 is fixed. It follows that s2+≡ max s2 and s2-≡ min s2
Correspond to  α = π and α = 0, respectively, i.e.



Kinematical limits

This equation defines a curve which is the boundary of the Dalitz plot in (s1,s2) plane

π+K0p at 3 GeV
⎯

The maximum values of the three-momenta of daughter particles in the rest frame of 
the mother particle:

Similar expressions are obtained for p2max and p3max by cyclic replacement of subscripts:
1 → 2, 2 → 3, 3 → 1 



Particle collisions
(centre-of-mass frame and laboratory frame)

The total 4-momentum of a system of n particles

Labeling CMS variables by asterisks, the CMS is defined as:

The LAB frame is defined as the reference frame in which one of the initial particles is at rest.
This particle is called the target particle, the other being the beam particle or incident particle. 

CMS LAB



Particle collisions
(centre-of-mass frame and laboratory frame)

beam particle
⇒

target particle

the invariant square of p is usually denoted by s 

⇒ s1/2 is the total CMS energy of the system

if particles c and d are different from a and b, then:  

in the LAB frame s is given by 

⇒



Particle collisions
(centre-of-mass frame and laboratory frame)

⇒

For ultra-relativistic particles, i.e. energies where one could neglect all masses in comparison 
with the particle energies, E*1 = E*2

⇒

⇒ In fixed target experiments at high energies most of the beam energy goes in the kinetic 
energy of the particle system → colliders, i.e. accelerators with two beams moving in 

opposite directions 

Example:  - in an e+e- collider one needs two beams of half Z boson mass, 
i.e. ~ 45.5 GeV each to produce it

- The equivalent LAB energy of a e+ on a target e- is 8.3 x 106 GeV !!!



Particle collisions
(centre-of-mass frame and laboratory frame)

Let’s calculate the LAB velocity of the centre of mass of the initial particles.

and p*1z + p*2z = 0using

⇒

For equal mass particles  - in the nonrelativistic limit the centre of mass 
moves with half the speed of incident particle

- the relativistic expression is:

For pLAB « m

vLAB = p LAB /γLABm and γLAB = (1 – v2
LAB

)-1/2 →

One can use vcm and γcm to write down the Lorentz transformation from LAB to CMS



Elastic collisions

One could construct sixteen pi · pj, i,j = 1, 2, 3, 4 invariants
- four are pi

2 = mi
2 – trivial invariants, i.e. constants without any dynamical content

- as far as pi · pj = pj · pi

⇒ Remain six invariants constrained by 4-mometum conservation 

⇒ Remain two independent variables
It is frequently convenient to use three invariants with one constraint.
The most used choice are the Mandelstam variables:

Since only two of them are independent there exists one relation between them:



Elastic collisions

t has a special meaning in the CMS where E*1 = E*2

- up to a sign, t is the square of the momentum transfer in the CMS
- In the elastic scattering t is always negative except at θ* = 0 (forward scattering) where t = 0



Inelastic collisions

inclusive collision X – any system of final state particles

energy and momentum conservation

Which is the threshold energy for this reaction?

⇒

⇒
CMS expression of s and using energy and momentum conservation

where we used: 



Inelastic collisions

setting  M = m3 + m4 + ··· + mn

introducing the LAB kinetic energy TLAB = ELAB – m1

Example: 
- the threshold kinetic energy for π+ + p → π+ + p + π+ + π+

using the approximate mass values mp = 940 MeV, mπ = mπ+ = mπ- = 140 MeV



Quasi-elastic collisions

particular case of inelastic collisions, i.e. 2 → 2 body reactions
i.e. e+ + e- → µ+ + µ-

Example: 

⇒ threshold energy is 1.03 GeV

Assuming the LAB energy of the incident pion of 1.5 GeV

⇒



Quasi-elastic collisions

CMS variables:

denoting the CMS angle between p3* and p1* by θ*  →→

LAB variables:

The angle between p3 with z axis is given by:→

and similarly  



Deep inelastic scattering

In lepton-hadron scattering at high energies a large number of hadrons are produced In the final state:
this is called deep inelastic scattering (DIS)

X stands for the hadronic system with an arbitrary number of particles 

A generic diagram looks like: 

To describe the DIS reaction kinematics we make the following notations:
- 4-momentum of the incoming electron k = (E,0,0,k)
- 4-momentum of the target proton by P
- 4-momentum of the scattered electron k′
- 4-momentum of the hadronic system P′
- 4-momentum of the exchanged virtual photon γ* q = k - k′



Deep inelastic scattering

4-momentum conservation →

And we have the mass shell conditions k2 = k′2 = me
2 and P2 = mp

2

Since the energies characteristic of DIS are at least several GeV, 
the electron mass can be set equal to zero → the square of the 4-momentum transfer is

q2 = (k – k′)2 = -2EE′(1 – cosθ )
→ q2  ≤ 0, i.e. the exchange photon is space-like !

The invariant W = P′2 is variable because the multiplicity of particles in the hadronic system is variable
→ the complete kinematics of DIS is determined by three independent invariants

relative 
to two as we are used for inelastic collisions

- One is the square of the total CMS energy S:

- The second invariant is usually chosen to be the negative square of the 4-momentum transfer:

-The third independent invariant can be taken to be W or 
alternatively one of the dimensionless variables:

or



Deep inelastic scattering

The variable y has a simple physical meaning in the target frame where 
P = (mp,0,0,0), k = (ELAB,0,0,ELAB) and k′ = (E′LAB,p3 )
→ y = 1 – E′LAB/ELAB, i.e. y is the relative energy loss of the electron in the LAB

→

The invariant x is Bjorken scaling variable or simply Bjorken-x, 
Bjorken predicting the property of  of scaling in DIS, confirmed experimentally               

Interesting is the expression of S in terms of beam energies.
- fixed target DIS, e or µ beam with 4-momentum k = (E,0,0,E) and p target with P = (Ep,0,0,0)

⇒
-e – p collider like HERA the 4-momenta of the colliding particles are  

P = (Ep,0,0,Ep) and k = (Ee,0,0,-Ee)

⇒
Other useful relations between various kinematical variables:

and  



Deep inelastic scattering

Within the framework of parton model, DIS proceeds by exchange of a photon or intermediate 
vector boson with only one of the quarks of the proton:

q q

q qq q

The electron – quark collision is elastic → the struck quark acquires a sufficient momentum 
to break away from the rest of proton as far as the
color force allows it to travel

→ at this stage some of the binding energy is converted in creation of a quark-antiquark pair 
from vacuum 

- the anti-quark combines with the original quark into a meson, leaving behind an other quark
which can give rise to the creation of another quark-antiquark pair 

→ fragmentation continues until the remaining energy drops bellow the pair creation threshold



Deep inelastic scattering

The result  - several mesons are created which travel roughly in the direction of struck quark
- such a system of mesons or more generally hadrons is called jet 
- the residue of proton is highly unstable system: - lost a quark

- absorbed a quark presumably 
of the wrong sort left over from 
the fragmentation

- has absorbed a fraction of the
energy transferred from the 
electron  

→ it breaks up into several hadrons
- the elastic electron-quark collision is the hard subprocess of DIS

At high momentum, where the proton mass is negligible, the quark energy is the same   
fraction of proton energy.
It turns out that this fraction is identical with the Bjorken-x defined above
Denoting the 4-momentum of the incoming quark by p we have therefore:  p = xP
Denoting the invariant (k + p)2 by s, which is the squared CMS energy of the subprocess
we have also : s = xS
This shows that the two independent invariants that control the kinematics of the subprocess
are x and Q2



Lorentz invariant phase space
Fermi’s golden rule

density of states
available for energy E
(phase space factor)

Transition rate
Transition matrix element

i → f   |<Ψ f|Vif|ΨI >|2

• |mif|2 may be unknown
• therefore, we need to calculate ρ(E) to extract the dynamics of the matrix element

Density of states

• state of motion of a single particle with momentum between 0 and p confined to volume V is 
specified by 6-D phase space (x,y,z,px,py,pz)
• momentum and space coordinate can be specified within h limit – from uncertainty principle   
→ element volume of space phase is h3

• therefore the number of states available to an individual particle, Ni , is:



Lorentz invariant phase space

• For a system of n particles the number of available final states, Nn ,, is the product of the 
individual particles’ number of states:

Phase space

• Definition: the phase space factor is the number of states per unit of energy interval per unit 
volume (V=1) : 

• Due to momentum conservation not all momenta are independent: 

• Can be accomodated by integrating over n-1 particles: 



Lorentz invariant phase space

•The momentum conservation can be considered by using Dirac δ function:

•Energy conservation gives:

The only problem: this is not Lorentz invariant



Lorentz invariant phase space

Insuring Lorentz invariance

• Fermi’s golden rule: 

• If ρ(E) is not Lorentz invariant → |mif|2 is not

• a single massive particle moving with energy E in a volume V described by a wavefunction Ψ
normalized to ʃ |Ψ|2 dV = 1

• This normalization implies that particle density is 1/V for a stationary observer

• if the particle speed is relativistic then there will be a contraction by a factor 1/γ in the  
direction of motion → the particle density appears to be γ/V

• renormalizing the wave functions to Ψ ′ → γ1/2 Ψ

guaranties that the particle density becomes invariant

• we can redifine the matrix element: 



Lorentz invariant phase space

⇒ Transition rate to a single final state becomes: 

Integrate over all final states to get: 

Lorentz invariant phase space



Lorentz invariant phase space

Is it invariant ?

⇒



2 body phase space



2 body phase space

In order to integrate we need to write E2 in terms of E1, m1 and m2 , 

In the centre of mass frame :

To integrate over E1 is used:

Two+body Lorenty invariant phase space is:



Finding n-body phase space recursively

N – body phase space in the centre of mass can be rewritten:

as:

n-1 n-1

The second integral is the phase space integral for n-1 particles 
with total momentum –pn and total energy (E-En)

Lorentz invariance allows this to be rewritten in terms of 
a system of  zero total momentum and energy 

Example: let′s go to 3-body phase space from 2-body





High energy heavy ion collisions

Space-time Evolution of the Collision
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High energy heavy ion collisions

Kinematic variables

)ln(
2
1

Z

Z

PE
PEy

−
+

=Rapidity: 

)
2

ln(tan)ln(
2
1 θη −=

−
+

=
Z

Z

PP
PP

Pseudo-rapidity:  

22
YXT ppp +=Transverse Momentum:

2
0

2 mpm TT +=Transverse Mass:



High energy heavy ion collisions

Useful Expressions

Edydp
y

ymp
ymE

z

z

TZ

T

=
=
=
=

tanh
sinh

cosh

β

2

*

*
max

*

S
LL

F
p

p
px ==

ν

ν

M
Qx

EE
qQppq

fi

fi

2

)(
;)(

2

2222

=

−=

−=−=

Feymann xF :

Bjorken x:

beamz

z

pE
pEx
)(

)(
+
+

=+Light-cone x+:



High energy heavy ion collisions

Invariant Cross Sections
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Invariant Differential Cross Section:

E d3σ/d3p
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Invariant Multiplicity Density:

E d3n/d3p



High energy heavy ion collisions

Spectrum Fit
mT spectrum:    d2n/(2πmT)dmTdy  versus (mT-m0)

pT spectrum:     d2n/(2πpT)dpTdy  versus pT

Boltzmann mT fit:    d2n/(2πmT)dmTdy ~ mT exp(-mT · slope)
where  slope parameter (1/T)

Why is this Boltzmann?
d3n/d3p ~ exp(-E/T)

Invariant Multiplicity Density:
Ed3n/d3p ~ E exp(-E/T)
E = mTcosh(y-ycm)

d2n/(2πmT)dmTdy ~ mT cosh(y-ycm) exp(-mT cosh(y-ycm)/T)
Slope depends on rapidity for an isotropic thermal fireball

slope = cosh(y-ycm)/T

2

2
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High energy heavy ion collisions

Naive Expectations

Thermal Isotropic Source mT Scaling

π, K and p have the same slope parameter e-E/T

Tπ = 190 MeV

TΚ = 300 MeV

Tp = 565 
MeV

mid-rapidity

• Data show a large difference 
among these particles

• Unrealistic high temperature ?
Statistical models predict Tch ~ 165 MeV



High energy heavy ion collisions

The invariant momentum spectrum of particles radiated by a thermal source 
with temperature T is :

If the quantum statistics is neglected where the particles are decoupled 
from each other, i.e. where the spectra are computed, eµ/T can be 
introduced in the normalization together with V, therefore, integrating over 
rapidity using modified Bessel function K1

:

⇒ Which is the EdN/d3p for an expanding gas ?



High energy heavy ion collisions

Single-particle distribution EdN/d3p for a relativistic gas described by a distribution 
function obeying the Boltzmann transport equation.

Is the momentum distribution in the center-of-mass frame given by the probability 
of finding a particle with velocity v times the Lorentz boosted thermal distribution 
normalized to the total number of particles?

ʃEdN/d3p = dN/d3v g(E,T(v))
n(T(v))

Ed3v

where E and T are the energy and temperature, respectively, in the comoving or 
local rest frame of the collective motion.
This yield the correct number of particles but it is inconsistent with energy 
conservation

The invariant momentum spectrum is given by:

f(x,p) obeys the Boltzmann equation  pµ∂µf(x,p) = ∆Γ(x,p)
∆Γ is the rate of change in g due to collision



High energy heavy ion collisions

This measures the particle flow through the given hypersurface σ as if the virtual particle walls of the 
fluid cells have suddenly disappeared and the particles are flying isotropic in all directions

σ defines the borderline between hydrodynamical behaviour and free-streaming particles
obviously these are mathematical idealizations

In reality the freeze-out hypersurface could be defined by points of the last interaction of each 
individual particle → a thickness of the order of mean free path

If the hypersurface σ(r,φ, ζ) in cylindrical coordinates 0 ≤ r ≤ R, 0 ≤ φ ≤ 2π and –Z ≤ ζ ≤ Z 
longitudinal directions



High energy heavy ion collisions

Because of azimuthal symmetry we can integrate over φ making use of the modified Bessel function:

For the transverse mass spectrum we integrate with the help of another modified Bessel function:

We can immediately derive the limiting case for large mT , since mT/pT → 1, K0/K1 → 1 and for finite 
flow (sinh ρ > 0) also I1/I0 → 1:



High energy heavy ion collisions
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High energy heavy ion collisions

M.Petrovici and Amalia Pop
- AIP Conference Proceedings 972(2008)98

β = 0.50±0.04
T = 109.8±16.5 MeV

β = 0.39±0.06
T = 111.6±23.8 MeV

π±, K±, K*, Ks
0,  p,⎯p, d,⎯d

β = 0.54±0.04, T = 98.7 ± 19.5 MeV

Λ, ⎯Λ,  Ξ±,,  Ω−,  J/ψ

β = 0.37±0.25, T = 215 ± 200 MeV ?

Transverse Flow

PRELIMINARYPRELIMINARY

Λ, ⎯Λ,  Ξ±,,  Ω−,  J/ψ

β = 0.37±0.12, T = 215 ± 89 MeV

50% error bars !!!



High energy heavy ion collisions

Transverse Flow

→ Tsallis Blast Wave:

f(x,p) ~ [1-(1-q)pµUµ/T]1/(1-q) - Tsallis non-extensive statistics
→ Boltzmann for (q-1) → 0

A. Lavagno, Phys.Lett. A301(2002)13
Z. Tang et al, arXiv:0812.1609 nucl-ex

π±,  K±, K*, Ks
0,⎯p, Λ, ⎯Λ,  Ξ±,,  Ω−,  d, ⎯d, J/ψ π±,  K±, K*, p,⎯p, d, ⎯d Λ, ⎯Λ,  Ξ±,,  Ω−, J/ψ

M.Petrovici and Amalia Pop
arXiv:0904.3666


