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Physics notation:

• g, kg → gram, kilogram, mass unit.

• cm,m→ centimeter, meter, lenght unit.

• C → Coulomb, electrostacit charge unit.

• J, eV → Joule, electronvolt, energy units.

• Gy → Gray= J/kg, absorbed dose unit.

• Z → atomic number.

• A→ atomic mass.

• NA → Avogadro’s number, NA = 6, 022× 1023mol−1.

• c→ vacuum light speed, c = 299.792.458m/s.

• me → electron mass, me = 9, 109× 10−31 kg.

• e→ electron charge, e = −1.602× 10−19C.

• r0 → electron classic radius, r0 = e2

mec2
= 2, 817× 10−15m.

• h, ~→ Planck’s constant, h = 6.626× 10−34 Js , ~ = 1.054× 10−34 Js.

• mn, mp → neutron and proton mass respectively, mn = 1.674×10−27 kg, mp = 1.672×10−27 kg.

Mathematics notation:

• z∗ → that if z ∈ C then z∗ is the complex conjugate.
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Chapter 1

Stopping power theory

1.1 Definition and conceptual topics

The first approach to the concept of stopping power is rather simple. Let us consider a physical system
conformed by:

• A target, made of some material of interest, commonly named the phantom.

• A charged particle accelerated so that, in addition to its rest energy, it has an amount of kinetic
energy T . Explaining how this projectile obtains its acceleration is not a goal of the present
text.

We already know that the target material contains a bunch of elements of different nature, namely
fundamental particles, atoms of molecules. We will call each of them the scattering centers. This
is because when our projectile travels inside the target, it is capable of noticing the existence of those
elements, and this action of “noticing” will be called interaction or scattering.

Each interaction presents a unique nature, and depends at least of three variables: the type of
scattering center, the type of projectile and the kinetic energy it possesses. After this things are well
stablished, there are usually different kinds of possible interactions between projectile and scatterer,
and to each of them a probability of occurrence associated. Some of this interactions may cause the
projectile to lose an amount of its energy, say dT . Obviously, dT < 0. If we are able to assume that
for each step of length dξ, the projectile loses, in average, dT , then, the possitively defined rate of
energy loss per length unit is:

S(T ) = −dT
dξ

. (1.1)

The question: “when are we able to assume this?” is what this text intends to answer. The
quantity S is called in literature stopping power. dT plays the role of the expectation value, with
a suitable definition, of the energy lost if the projectile manages to travel a length unit dξ in the
phantom. This definition, altough accurate, does not contain any information on how to deal with
each of the ingredients we named before. For this reason, a seemingly more complex definition is
needed, capable of making notorius the statistical nature of the energy deposition process.

The goal of the stopping power itself, is to somehow model all possible interactions the projectile,
usually a particle of mass M and charge Zpe, is subject to when traveling inside some material. As
already explained, the matter is conformed by several different scattering centers, and to each of them
there are several interaction types associated. Logically, treating them all independently to character-
ize, for example, the energy transferred, is not possible nor desirable. This is why thinking a solution
in statistical terms is neccesary, using sets of interactions with similar characteristics presenting a
certain probability of ocurrence. An example could be modelling the interaction of an electron with
an ion and then apply the same rule for every other electron in the material, discriminating them with
some statistical weight. This analysis will lead us to what is called the electronic stopping power.

3



4 CHAPTER 1. STOPPING POWER THEORY

The scattering centers might produce elastic or inelastic collisions. In the first, the energy and
momentum magnitude of the projectile does not change, but it might suffer a deflection of angle
θscatt from the direction of incidence. Even backscattering is a possibility, with θscatt ≈ π. When the
problem being solved is the transport of particles, for example when the dosimetry of a heavy ion beam
is being modelled, the elastic scattering plays an important role. The projectiles are deflected from
the beam direction without depositing energy, but it will certainly lose it somewhere else. Therefore,
understanding the so called angular straggling accurately is a need. In the present text, we will
be concerned with the inelastic interactions, those that may also cause energy loss in the incident
particle. The energy lost in one interaction is also attached to a probability, therefore the inelastic
collisions presents an energy straggling that will undermine the stopping power definition.

As can be deduced from this explanation, a projectile travelling inside some material will follow
tortuous paths rather than moving in a straight line (see figure 1.2), losing part of its energy at
every inelastic collision until it spent it all, or a capture process ocurr. An example of this is the
proton-boron fusion therapy technique. It consists on doping the cancerous tumor with an amount
of 11B boron non-radioactive isotope, that in comparison with the other scattering centers present
in biological tissue, presents a high probability of induce a nuclear reaction with the protons of the
clinical beam. After this capture process, the proton will no further deposite energy, but some reaction
products will. On the other cases, the projectile looses small amounts of energy per collision until it
comes to rest. In the next section, an explanation on how to think the stopping power statistically
will be developed, introducing the physical magnitudes needed to fully describe the energy deposition
of charged particles in matter.

For the sake of completitude, a word about the terminology used in english to refer to S. As
already mentioned by Inokuti[1], using the SI unit system,

[S] =
J

m
=
N ×m
m

= N ,

which is indeed a force unit. Therefore, the name “stopping power” seems quite inaccurate, being
“power” defined as the energy per time unit. Inokuti indicates that this name for the projectile energy
loss probably comes from the german word Bremsvermögen, that literally translates as “the capability
of braking”. The word “stop” is also questionable, because it usually refers to the notion of “coming to
rest”, while the german original verb bremsen refers to “braking” or “decelerating”. This note is only
to clear concepts, because the stopping power clearly quantifies the force exerted by the matter on
the projectile with the aim of decelerating it, and consequently is sometimes referred as the “stopping
force”. Throughout the rest of the lecture, the most common name found in literature will be used,
namely, stopping power.

1.2 Geometrical and statistical considerations

Lets assume that out phantom is a thick foil of volume V , width ξ, and with the greatest face presenting
an area A. The projectile is part of a beam reaching the foil, designated by the letter J . This quantity
is called the current density of projectiles:

[J ] =
number of projectiles

unit time× unit area
.

If each of the scattering centers of the foil present a transversal area σ to the projectiles, we may say
that an interaction occurs if one of the particles in J crosses the surface σ. This area is denominated
in literature the cross section of the interaction between projectile and scattering center, and it has
profound physical implicancies.

Assuming that the rate of particles that are able to reach the entrance surface of the foil is constant,
the fraction of them that can effectively interact with the scatterers in a time unit is σ/A. In the
same unit of time, the total number of particles traversing the phantom surface can be estimated as
J ×A. Consequently, the net number of interactions per unit time that occur can be estimated as
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η = J A σ
A = J σ. Consider that inside the phantom there is a density N of scattering centers. Then,

the total number of collisions inside it per unit time is:

η V N = J σ A ξ N = (J A)(N ξ σ) . (1.2)

Being J A the number of projectiles entering
the phantom in a time t, by discarding other pos-
sibilities, N ξ σ should be in average the number
of interactions per projectile. We will denote it as
〈n〉 = N ξ σ. This has its own logic. If changing
the perspective of the problem, what we intend
to quantify here is the probability Pn of finding
a number n of projectiles contained in the small
volume v = σξ associated with one scatterer, in a
unit time t, provided the v volumes do not over-
lap. This approximation is not valid for example
in crystal solids.

Figure 1.1: Sketch of a target phantom with the
cross section area presented by the scattering cen-
ters.

This probability is solution of a known statistical problem of the kinetic theory of ideal gases, and
it obeys the so called Poisson’s distribution:

Pn =
(Nv)n

n!
e−Nv . (1.3)

The properties of this distribution are well known:

∞∑
n=0

Pn = 1 , (1.4)

∞∑
n=0

nPn = 〈n〉 = Nv = Nξσ . (1.5)

Then, what we called the average number of interactions per projectile estimated geometrically,
is the mean of the Poisson distribution estimated by treating the problem statistically. This will be
useful in a moment, but first lets try to approach the explanation using other tool.

A simple exercise solved by Monte Carlo experts is the random walk. There are several ways to
describe the problem, but here we will use the one with direct association: consider a particle that,
from a starting point in space, travels to another at some distance λ. The space where this particle
travels is filled with an homogeneous and isotropic material, and we will consider that the source that
emits this particles, do so in an isotropic way. When the particle stops, it is considered as if it is
interacting with some constitutent of the material, and from that point it will travel again in another
direction. Each step’s direction is randomly drawn, to give the statistical meaning to the problem.

It can be shown that, after n steps, the particles have “walked” a mean distance r. Even more,
this mean distance corresponds to the statistical mean of the Poisson’s distribution. If the source
location corresponds with r = 0, the radial distribution of interactions can be constructed. For this,
the number of collisions is counted on several spherical shells of width dr centered at the source. This
leads to the Poisson’s distribution as shown in the second graphic of figure 1.2, normalized to the
maximum number of collisions.
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Figure 1.2: Left: Sample particle trajectories in a 2D random walk. Right: Poisson’s distribution of the random
walk.

In transport Monte Carlo codes, the particles are not allowed to travel λ each step, and they
certainly does not stop after n collisions. Here, the interactions were elastic, so the limit of the simu-
lation was the number of steps. In a more realistic case, the particle has a scalar number associated,
its kinetic energy T , and it stops when the projectiles run out of energy. Nevertheless, this is an
illustrative example of how the Monte Carlo codes work, and how they predict physical answers to
problems like the mean number of collisions per projectile in matter.

Paying attention to what we have achieved, now we know the average of interactions of one
projectile with different scattering centers inside a phantom, regardless of its form. This is exactly
the statistical concept in which we want to sustain the study of physically relevant quantities as the
stopping power. Therefore, we are ready to give the more sofisticated definition of stopping power.

1.3 Statistical stopping power

Consider the projectile entering a phantom whose material is conformed by different scattering centers
which we will label using and index a. As already said, different interactions might occur with the same
kind of scatterer, and we will correspondingly label them with a index b. In a discrete approximation,
we let the scattering center a to be capable of absorbing finite amounts of energy wab in a b interaction.
This is probably a more suitable approximation for a quantum treatment, but nevertheless easily
generalizable. If the projectile travels a distance ξ in the phantom, it will suffer nb interactions of type
b, and it will have lost an energy:

∆a = −
∑
b

wabnb . (1.6)

Since wab is not a stochastic variable (it is fixed by scattering center and projectile types, and the
last one energy), the mean energy loss by the projectile can be estimated as:

〈∆a〉 = −
∑
b

wab〈nb〉 , (1.7)

where 〈nb〉 is the average number of collisions with scattering centers of type b per projectile, or
〈nb〉 = Naξσab. Na is then the density of type a scattering centers and σab the cross section of the
corresponding interaction with the projectile. It is perhaps the correct time to clarify that σab is a
microscopic quantity, while the stopping power we are trying to define is a macroscopic magnitude.
It is also worthy signaling the generality of this expression, where a may denote an electron, nucleus,
atom or molecule. The energy lost by the projectile can then be expressed as:
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〈∆a〉 = −
∑
b

Naξwabσab

= −Naξ
∑
b

wabσab .

In general terms, the microscopic cross section is thought of as a probability distribution for the
interaction to take place, and depends directly on the available kinetic energy T of the projectile, or
the scattering angle θscatt, and consequently, a more adequate notation for the energy loss is:

∆T = −
∑
a

Naξ
∑
b

∫
wabdσab , (1.8)

where the contribution of each type of scatterer was added. Thinking of a small displacement ∆ξ, we
are able to write our general definition of the stopping power:

S(T ) = −∆T

∆ξ
=
∑
a

Na

∑
b

∫
wabσab . (1.9)

It can be seen that the only information that is needed to evaluate this expression are the energetic
levels and the interaction probability, namely, the differential cross section.

This formalism is completely deduced in terms of classical concepts, but this does not imply that its
ingredients cannot (in fact they should) be defined in a quantum theoretical frame. On the other hand,
this formula is valid at first orden, because it is simply the linear multiplication of the microscopic
properties times the amount of scattering centers. This assumption means that the way the projectile
interacts with one scatterer is totaly independent of how was the immediately previous interaction.
This implies that there exists an independence of random events known as Màrkov process. Altough
this is not rigorously true, the results of the theory with its corresponding corrections, fit very well
with the experimental data.

Our formula for the stopping power also pre-suposes that the interaction between the projectile
particles, if they are part of a beam, is negligible, as if there were a considerable amount of time
between one particle and the next. If this were not this way, different projectiles of the same beam
might present different kinetic energies and direction of movement.

In some fields of study, such us astrophysics, a useful definition is that of the stopping cross section,
which is a macroscopic quantity sometimes measured experimentally, that for scattering centersof type
a is defined as:

(σS)a =
∑
b

∫
wabdσab , (1.10)

and consequently the stopping power reads:

S(T ) =
∑
a

Na (σS)a . (1.11)

At this point, knowing the energy loss of the projectile consists of knowing the details of σab
and make the calculation term by term, interaction by interaction. This is still pretty tedious and
un-practical. Thereby, an average definition of σab over every interaction possible seems to be the
logical next step. If this average proves not to be enough, the corresponding interaction enhancing the
difference respect the experimental data can be studied, and corrections can be added to the mean
stopping power formula. This is far simpler than studying each of the possible interactions.

Even though we will describe the energy loss of light particles as electrons and positrons, the
problem that leads the ideas of the theory is that of the stopping of heavy ions of mass M and charge
Zpe in all energy ranges, including relativistic effects. This kind of projectiles lose their energy mainly
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by interaction with the atomic elecron cloud. Therefore, what we call a swift ion is that whose
kinetic energy far exceeds the binding energy of this electrons. As we know, semi-classically speaking,
this binding energies represent the mean orbital velocity of the electrons. Therefore, care must be
taken when the ions are considered slow, or when the target atom presents high atomic number Zt,
because the inner shells have higher binding energies. This effect gives rise to the shell correction by
Sternheimer[2] in 1952. We will try to expose several corrections of this kind throughout this lecture.

Back to the atomic electrons, there exists two possible situations of interaction with the heavy
ion: either the atom excites from its ground state, moving the electron from one orbital to another,
or it becomes ionized, removing the electron from the atom and its energy passes from a discrete to a
continuous spectra. Then with only one interaction, the atom might:

1. Absorb a mininum amount of energy εmin = 〈I〉 known as mean excitation potential. The
definition of this quantity is abstract and complicated, and depends strongly on the theoretical
frames used to calculate σab.

2. Absorb a maximum amount of energy εmax corresponding to a frontal, collineal collision. This
quantity is easily defined, and this will be our start point.

Respect to the theoretical frames named when introducing the mean excitation potential, we refer
for example to the first calculation of the stopping power due to Bohr between 1913 and 1915, before
the emergence of quantum mechanics. This calculation makes extensive use of the impact parameter
b to characterize the energetic limits of the theory. After quantum mechanics was born, Bethe repeated
the calculation, but he also proposed the first relativistic version of the deduction, between 1930 and
1932.



Chapter 2

Physics theory

2.1 Maximum energy transfer: frontal collision

The expression for the maximum energy trans-
fer εmax is obtainable from the relativistic ar-
guments of energy and momentum conservation.
Lets think about two particles of mass M and m,
with m initially at rest. Then, we can use a refer-
ence frame attached to it to describe the dynam-
ical variables. This is usually called the labora-
tory frame. In this system, M travels collineal
to m with velocity ~v.

M

m

v⃗ v⃗M

v⃗m

θscatt

Figure 2.1: Simple sketch of a frontal collision.

The total energy before and after the collision should be written in a convenient way to make the
calculation easier: {

Ei = γMc2 +mc2 ,
Ef = γMMc2 + γmmc

2 = (γMc2 −∆) + (mc2 + ∆) ,
(2.1)

where γ2
i = (1 − v2

i /c
2)−1 is the Lorentz factor, and ∆ is the amount of energy transfered in the

collision from M to m. In the laboratory frame, the momentum before and after might be written as:

pi = piM + pim =
√
γ2M2c2 −M2c2 ,

pf = pfM − P
f
m =

√
(EfM )2

c2
−M2c2 −

√
(Efm)2

c2
−m2c2

=

√
(γMc2 −∆)2

c2
−M2c2 −

√
(mc2 + ∆)2

c2
−m2c2 .

The minus sign in the final momentum is because we are using the condition that the maximum
energy transfer only occur if the projectil “bounces” in m. Then, using that lineal momentum must
be conserved, we can start to clear ∆.

√
γ2M2c2 −M2c2 =

√
(γMc2 −∆)2

c2
−M2c2 −

√
(mc2 + ∆)2

c2
−m2c2

γ2β2M2c2 =
(γMc2 −∆)2

c2
−M2c2 +

(mc2 + ∆)2

c2
−m2c2−

− 2

√(
(γMc2 −∆)2

c2
−M2c2

)(
(mc2 + ∆)2

c2
−m2c2

)
,

9
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where in the left-hand-side (l.h.s.), β = v/c and γ2 − 1 = β2

1−β2 = γ2β2 was used. Leaving the square

root for the last, every other term in the right-hand-side (r.h.s.) goes to the l.h.s. Working in this
member:

γ2βvM2c2 +M2c2 +m2c2 −
(
γ2M2c2 − 2γM∆ +

∆2

c2

)
−
(
m2c2 + 2m∆ +

∆2

c2

)
=

= γ2β2M2c2 +M2c2(1− γ2) + 2γM∆− ∆2

c2
− 2m∆− ∆2

c2

= γ2β2M2c2 +M2c2(−γ2β2) + 2∆(Mγ −m)− 2
∆2

c2

= 2∆(Mγ −m)− 2
∆2

c2
.

The factor 2 will cancel with the on in the r.h.s. multiplying the square root. Now, lets work with
this square root argument:

(
γ2M2c2 − 2γM∆ +

∆2

c2
−M2c2

)(
m2c2 + 2m∆ +

∆2

c2
−m2c2

)
=

=

(
M2c2β2γ2 − 2γM∆ +

∆2

c2

)(
2m∆ +

∆2

c2

)
= 2mM2c2β2γ2∆− 4mMγ∆2 + 2m

∆3

c2
+M2β2γ2∆2 − 2

γM

c2
∆3 +

∆4

c4

= 2mM2c2β2γ2∆ +M2β2γ2∆2 − 4mMγ∆2 + 2
∆3

c2
(m−Mγ) +

∆4

c4
.

All of this is what remains in the r.h.s. when squaring both sides. Applying this operation to the
l.f.s.: (

∆(Mγ −m)− ∆2

c2

)2

= ∆2(Mγ −m2)2 − 2
∆3

c2
(Mγ −m) +

∆4

c4
.

Now we are able to equal both sides:

∆2(Mγ −m)2 +
�����������

2
∆3

c2
(m−Mγ) +

∆4

c4
= 2mM2c2β2γ2∆ +M2β2γ2∆2 − 4mMγ∆2+

+
�����������

2
∆3

c2
(m−Mγ) +

∆4

c4

∆
[
(m−Mγ)2 −M2β2γ2 + 4mMγ

]
= 2mM2c2β2γ2

∆
[
m2 − 2mMγ + γ2M2 −M2β2γ2 + 4mMγ

]
= 2mM2c2β2γ2

∆[m2 + 2mMγ + γ2M2(1− β2)] = 2mM2c2β2γ2

∆
[
m2 + 2mMγ +M2

]
= 2mM2c2β2γ2 ,

and finally, we obtain ∆, that in this situation of the energy-momentum conservation corresponds to
the maximum energy transferred εmax:

εmax = ∆ =
2mc2β2γ2

1 + 2mM γ +
(
m
M

)2 . (2.2)

If, e.g., the projectile is a proton, and the scattering center is an electron, we have:

M = mp = 1.672× 10−27 kg
m = me = 9.109× 10−31 kg

⇒ m

M
∼ 1

1835
∼ 0 . (2.3)
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In this approximation, namely when M >> m, the energy can be written as:

εmax ' 2mc2β2γ2 . (2.4)

And the last useful case is, together with M >> m, using β << 1, or v << c which is the
non-relativistic limit. In this case:

εmax ' 2mv2 . (2.5)

This energy transfers are representative of every collision that can be thought of as collineal, that
is exactly using the minimum impact parameter b possible from a classical point of view.

As will be seen, the calculation of 〈I〉 is much more complex and representative of the theoretical
frame, and a general expression derived from first principles is still not achieved. This energetic limit
represent a break in the stopping power, associated to the point where its now valid treating the
eletron as free, and atomic effects becomes relevant. From a classical point of view, this enforces the
existence of a number b1 separating the effects of close and distant collisions. From a quantum
point of view, the discriminating parameter is the momentum transfer ~q, and because of that they
change names to hard and soft collisions respectively.

In next chapter, the full classical theory of stopping power will be studied.

2.2 Electric permittivity: energy loss function

2.2.1 General properties: Macroscopic Maxwell equations

The theory of the electric stopping power in a classical framework, consists on making a rough calcu-
lation of the electric field that the projectile generates on one and only one atomic electron at a time.
If the transporting material is dense, there is a not-negligible chance that the distance |~r| between
the projectile and aforementioned electron is filled with several other scattering centers susceptible
to the electromagnetic fields. Therefore, the electric field at the electron position is distorted respect
its vacuum behavior. In other words, in a dense material, the projectile might interact with several
scattering centers simultaneously, and polarization effects are not negligible anymore.

In a dense material, a microscopic treatment is unfeasible, and consequently classical electrody-
namics seems to be the correct framework to make estimations on the energy loss per pathlength. The
Maxwell equations for macroscopic fields with external free sources (ρ, ~J) are:

∇ · ~D = 4πρ ; ∇× ~E +
1

c

∂ ~B

∂t
= 0 ;

∇ · ~B = 0 ; ∇× ~H − 1

c

∂ ~D

∂t
=

4π

c
~J ,

where in general ~D = ε̂ ~E and ~B = µ̂ ~H, where ε̂ and µ̂ are operators on the fields (not necessarily
lineal), known as electric permittivity and magnetic permeability tensors respectively. This
operators are usually defined in such a way that ρ and ~J represent the free charge densities and
currents (without the induced distributions). Given that the magnetic forces do not work, the only
force applied to the electron capable of inducing an energy transfer would be ~F = −e ~E. Therefore,
we concentrate our efforts in solving the pair of equations:

∇ · ~D = 4πρ ; ∇× ~E = 0 .

The way of connecting ~E and ~D might be non-local both spatially and temporarily. This means
that ~D(~r, t) might depend on the values of ~E(~r ′, t′) with ~r ′ 6= ~r and t′ 6= t. In general, if the
transporting material is not isotropic, we have:
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Da(~r, t) =
∑
b

∫
d3~r ′

∫
dt′εab(~r

′, t′)Eb(~r − ~r ′, t− t′) . (2.6)

In the optical energy range (large wavelengths), the spatial non-locality can usually be neglected,
and consequently:

Da(~r, t) =
∑
b

∫
dt′εab(t

′)Eb(~r, t− t′) . (2.7)

Also, if the transporting material is simple (isotropic), we have:

~D(~r, t) =

∫
dt′ε(t′) ~E(~r, t− t′) . (2.8)

It is also convenient keep in mind that the electric field exists even without a propagating material,
and consequently, extracting the corresponding “vacuum” field is useful for calculation issues. Then:

~D(~r, t) = ~E(~x, t) +

∫
dt′ f(t′) ~E(~r, t− t′) , (2.9)

where f(t′) is a function that depends entirely on the material properties. All of this are approxima-
tions to merely simplify the model. If applying a Fourier transform to last expression, we have:

1√
2π

∫
dω ~D(~r, ω)e−iωt =

1√
2π

∫
dω ~E(~r, ω)e−iωt +

∫
dt′ f(t′)

1√
2π

∫
dω ~E(~r, ω)e−iω(t−t′)

=
1√
2π

∫
dω ~E(~r, ω)e−iωt +

1√
2π

∫
dω ~E(~r, ω)

[∫
dt′ f(t′)eiωt

′
]
e−iωt ,

and using the orthogonality of {eiωt}, this expression becomes a lineal equation in ω:

~D(~r, ω) = ~E(~r, ω) + ~E(~r, ω)

∫
dt′ f(t′)eiωt

′

= ~E(~r, ω)

[
1 +

∫
dt′ f(t′)eiωt

′
]

= ε(ω) ~E(~r, ω) ,

where the dispersion relation has been defined as:

ε(ω) = 1 +

∫
dt′ f(t′)eiωt

′
. (2.10)

For the convolution to be correctly defined, f(t′) must not diverge (it is finite) for every possible
value t′. This means that the value of ~D at any time t must not be excesively affected by ~E(t′) at
remotes times t′. Under this conditions, the general expression (2.10) in isotropic media provides
a lot of information at an optical level of the dispersion relation properties. First of all, ε(ω) is a
complex function, therefore it can be written as ε(ω) = ε1(ω) + iε2(ω), where ε1(ω) = Re(ε(ω)) and
ε2(ω) = Im(ε(ω)). This in turn implies that:

ε(ω) = 1 +

∫
f(t′) cos(ωt′)dt′ + i

∫
f(t′) sin(ωt′)dt′

ε∗(ω) = 1 +

∫
f(t′) cos(ωt′)dt′ − i

∫
f(t′) sin(ωt′)dt′

= 1 +

∫
f(t′) cos(−ωt′)dt′ + i

∫
f(t′) sin(−ωt′)dt′

= ε(−ω) .
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This merely establishes that ε1(−ω) = ε1(ω) (is even) and ε2(−ω) = −ε2(ω) (is odd). If causality
is to be respected, it is necessary that t′ < t, because ~D(t) must only be affected by the past values of
~E. Therefore, integration limits can be established thinking of all the possible previous moments t′:

ε(ω) = 1 +

∫ ∞
0

f(t′)eiωt
′
dt′ . (2.11)

2.2.2 Analytical properties: ε(ω) in the complex plane

In several occasions, it will be needed to make an extension ε(ω) → ε(z) with z ∈ C. Therefore it
is useful to study some of the properties of (2.11) as an analytic funtion ε : C → C. First of all, if
z = z1 + iz2, then:

ε(z) = 1 +

∫ ∞
0

f(t′)eiz1t
′
e−z2t

′
dt′ . (2.12)

But f(t′) is finite for every value of t′, and in the upper half-plane z2 > 0, therefore ε(z) does not
diverge anywhere because of the e−z2t

′
factor. Therefore, ε(z) is regular everywhere if z ∈ C(z2 >

0). This property, derived from the causality condition, together with other properties enlisted by
Landau[3] ensures that in the upper half-plane, ε(z) has no zeros (INTENTAR PROBAR ESTO POR
COMPLETITUD!!). This is certainly useful provided most of the integrals to be evaluated depends
on the following function:

1

ε(ω)
=

1

ε1(ω) + iε2(ω)
=

ε1(ω)

|ε(ω)|2
− i ε2(ω)

|ε(ω)|2
, (2.13)

which extended to the complex plane, shows no poles in the upper half-plane. Therefore, be means of
the Cauchy-Goursat theorem[4], any closed curve in the upper half-plane gives a zero integral.

It is also useful to note that 1/ε(ω) shares its parity with ε(ω), and also Im
(

1
ε(ω)

)
= − ε2(ω)

|ε(ω)|2 < 0.

This imaginary part is usually named the energy loss function (ELF) and denoted by η(ω).

2.2.3 High frequency general behaviour

Independently of the material (whether it is a dielectric or a conductor), if ω → ∞, necessarily
ε(ω) → 1, because no polarization effect can occur if the electric field varies sufficiently fast. Given
ω >> ν, the polarization of the material can be calculated treating the electrons as free respect the
interaction with the atomic nucleus and other electrons. Therefore, the equation for the electron’s
displacement ~x is me~̈x = e ~E = e ~E0e

−iωt. Then:

me~̇x = i
e

ω
~E0e
−iωt ⇒ ~x = − e

meω2
~E0e
−iωt = − e

meω2
~E .

If N is the atomic density, and each atom have Zt electrons, the polarization ~P per volume unit
will be simply ~P = NZt(e~x), where ~d = e~x is the dipolar moment of each electron. Consequently:

~P = −NZte
2

meω2
~E .

On the other hand, we know that:

~D = ~E + 4π ~P = ~E − 4πNZte
2

meω2
~E

=

(
1− 4πNZte

2

meω2

)
~E = ε(ω) ~E .

Then, if ω → ∞, we have that ε(ω) → 1 − ω2
p

ω2 where the plasmon frequency ω2
p = 4πNZte2

me
has

been defined.
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Chapter 3

Classic Stopping Power

3.1 Impulse transfer approximation

Consider our projectile is a heavy ion with mass M and charge Zpe, whose initial velocity in the
laboratory reference frame is ~v. In this frame, the scattering material is at rest, and its constituents
can be considered at rest also, regardless the electron movement in their orbits. This is so if the initial
velocity of the ion is much more greater than the characteristic velocity of the electron in its orbit.

v⃗ x

b

Figure 3.1: Definition of impact parameter in
electron-ion interaction.

This is also useful to neglect the magnetic field
effects generated by the moving projectile. It will
also be used that M >> me, i.e., the ion is heavy
enough so that its trajectory is slightly modified
from the initial direction after the interaction with
the electron. This is the small impulse approxima-
tion in which Bohr based its calculation.

We define the impact parameter b as the min-
imum traversal distance between the projectile’s
initial direction of movement and the electron’s
position.

The impulse transferred to the electron can be calculated using the classical definitions as:

∆p =

∫ ∞
−∞

Fdt = e

∫ ∞
−∞

E⊥dt = e

∫ ∞
−∞

E⊥
dt

dx
dx =

e

v

∫ ∞
−∞

E⊥dx , (3.1)

where the difference is measured long time before and after the collision takes place. Consequently,
the projectile can be assumed to be in both situations far away in the x axis. The fact of choosing
the component of the electric field perpendicular to the direction of movement is a consequence of
the symmetry of the problem. At first, it might appear as if there is no symmetry, but it plays a
fundamental role in the classical theory. In this approximation, we can think of the ion as belonging
to a “wire” around which Gauss law can be used with a virtual cylindrical surface. See figure 3.2.∫

cylinder

~E · d~a =

∫
cylinder

E⊥da = 2πb

∫ ∞
−∞

E⊥dx = 4πqenc ⇒
∫ ∞
−∞

E⊥dx =
2Zpe

b
,

and with this, the impulse transfer is:

∆p =
2Zpe

2

vb
. (3.2)

15
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b

E⃗⊥

v⃗

da=2π bdx

x

v⃗

M (t 0) M (t 1)

E⃗( t1) E⃗( t0)

E⃗( t0)+ E⃗ (t1)

me

x

Figure 3.2: Gauss law with a cylindrical surface around the heavy ion path.

This enhances the evidence of the symmetry between two opposite times t0 and t1 before and
after the collision takes place, using that t = 0 s is reached when the projectile is exactly at the
impact parameter distance from the electron. The “net” field the electron feels is traversal due to this
symmetry, canceling the longitudinal components when taking the full time interval in consideration.

The corresponding classical energy transfer to the atomic electron is then:

∆E(b) =
∆p2

2me
=

2Z2
pe

4

mev2b2
, (3.3)

Then, adapting equation (1.9) to the information we are working with, dS = Ne∆E(b)dσ(b), where
we need an expression for the classical collision cross section, and Ne represents the electronic density.
This is easily estimated as:

Ne =
ZtρNA

At
; [Ne] =

g

cm3

mol

g

1

mol
=

1

cm3
, (3.4)

where Zt and At are the material atomic and mass number respectively, ρ is its mass density, and NA

is Avogadro’s constant.

The classical cross section is an already well known quantity and an elegant derivation may be found
in Landau’s[5] book on classical mechanics. As a function of the impact parameter, the expression
for the differential cross section if the collision presents azymuthal symmetry in the incident direction
axis is dσ = 2πbdb. Putting everything together, we get:

dS = Ne∆E(b)dσ(b) = Ne

2Z2
pe

4

mev2b2
2πbdb =

4πNeZ
2
pe

4

mev2

db

b
(3.5)

The implicit association behind all of this deductions is that of the small angle coulomb scatter-
ing. Rutherford’s exact formula establishing the relation between scattering angle θscatt and impact
parameter b is:

2Zpe
2

pvb
= 2 tan

(
θscatt

2

)
∼ θscatt . (3.6)

This can be geometrically deduced analyzing the impulse transfer vector as in figure 3.3.

θscatt ≈
∆p

p
=

2Zpe
2

pvb
. (3.7)

We will see that using the exact Rutherford formula has other implications in the stopping power
theory when relaxing the small angle approximation.
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It is important to keep in mind that expres-
sion (3.5) is obtained thinking about the energy
transferred to the electron, while the geometric
picture in figure 3.3 is the momentum lost by the
projectile, meaning these are quantities defined in
different frames, although related.

M

p⃗

d p⃗
θscatt

Figure 3.3: Relation between small scattering angle
and small impulse transfer.

There is another way of obtaining expression (3.5)
that does not concern our definition (1.9). Let’s
consider a uniform distribution of electrons in the
target’s material.

The “net” number of electrons from the cylindrical
volume dV in figure 3.4 that “sees” the projectile
is:

Ninteractions = NedV = Ne(2πbdbdx) . (3.8)

b

v⃗

b+db

dV

M

x

Figure 3.4: Volume containing the electrons
that interact with the projectiles field.

Therefore, we define the energy lost by the projectile −dT = Ne∆E(b)dV = Ne∆(b)2πbdbdx ,, and
consequently the differential stopping power:

dS = −dT
dx

= Ne∆E(b)2πbdbdx =
4πNeZ

2
pe

4

mev2
db

b
.

Here, the stopping power was written using the estimation of the net number of interactions with atomic

electrons.

Next step consists of making the integration needed to get to know S(T ). The dependence in b−1

makes it impossible to integrate in the whole impact parameter interval [0,∞). This is because:

• When b = 0 the stopping power results infinite, but the projectile cannot deliver this amount
of energy. This is the same divergence in Rutherford’s formula for the long-range Coulomb
interaction.

• When b→∞ the electrons are “infinitely far” from the projectile, and the collision characteristic
time would be infinite.

In both cases the small impulse transference approximation is lost. Therefore, a pair of limits bmin
and bmax are proposed so that the calculation remains physic. For example, we already know the
maximum amount of energy than can be transferred to the electron in a close collision when b → 0,
equation (2.2). If M >> me and the projectile can be considered relativistic, then:

εmax ' 2mev
2γ2 =

2Z2
pe

4

mev2bmin
⇒ bmin '

Zpe
2

mev2γ
. (3.9)

On the other hand, if the projectile is far away from the electron, the characteristic time of the
collision, T = b

γv will be much greater than the time associated with the mean electron’s orbital

period τ = 1
ν , where ν is the mean orbital frequency. If T >> τ then the electron is capable of doing

many cycles orbiting around the nucleus while the projectiles slowly passes with practically no energy
transfer. As we intend the projectile to lose energy, we choose:

T ≤ τ ⇒ b

γv
≤ 1

ν
⇒ b ≤ γv

ν
= bmax . (3.10)
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With these limits, the integral can be handled:

S(T ) =

∫ bmax

bmin

dS(b) =
4πNeZ

2
pe

4

mev2

∫ bmax

bmin

db

b

=
4πNeZ

2
pe

4

mev2
ln

(
bmax
bmin

)
(3.11)

=
4πNeZ

2
pe

4

mev2
ln

(
γv

ν

mev
2γ

Zpe2

)
=

4πNeZ
2
pe

4

mev2

{
ln

(
mev

3

Zpe2ν

)
− ln(1− β2)

}
.

It is convenient to rewrite the two big factors
in this expression, defining some interesting pa-
rameters as follows:

4πNeZ
2
pe

4

mev2
=

4πZtρNAZ
2
pe

4

Atmev2
= K0

ρ

At

ZtZ
2
p

β2
;

mev
3

Zpe2ν
=

2mev
2

}ν
}v

2Zpe2
=

2mev
2

〈I〉
1

2η
,

where K0 = 4πNAe
4

mec2
and η =

Zpe2

}v is the Sommer-
feld parameter measuring the Coulomb interac-
tion importance. It also appears in the quantum
mechanically treated Coulomb scattering prob-
lem. Taking all of this to the stopping power for-
mula, we are able to give our first approximation
using the classical picture, containing every fea-
ture Bohr presented in 1915:

Adiabatic Bohr’s radius

The upper limit bmax = γv
ν is defined

thinking of the distance to the electron
where the energy transfer is negligible, in
other words, the interaction process is adi-
abatic. This limit is proposed by Bohr[6]
in 1915, and it presupposes that the elec-
trons are orbiting the nucleus of the atom.
It might seem as we are dabbling in quan-
tum mechanics, but the modern picture
of this last was not developed until 1925
with the famous Schrödinger’s[7] equation.
Nevertheless, the notion of periodic trajec-
tories with quantized action was already
there, proposed separately by Wilson[8] and
Sommerfeld[9] by the condition:∮

H(p,q)=E

pidqi = nih , (3.12)

where H is the Hamiltonian, qi and pi
the generalized coordinates and conjugate
momentum respectively, ni ∈ Z and h is
Planck’s constant.
bmax is defined in a way that the electron
accomplishes several periods of motion like
these in the atom without energy transfer
from the projectile, and thereby was called
the Bohr’s adiabatic radius.
Other important characteristic of this ra-
dius is the mean orbital period τ = 1

ν .
According to modern quantum mechanics,
each electron presents different binding en-
ergy for each orbital, and consequently dif-
ferent associated frequency ν. Bohr’s calcu-
lation of the stopping power uses the idea of
an average frequency, related to the mean
excitation potential 〈I〉 = hν, but fails to
give a first principle definition.

S(T ) = K0
ρ

At

ZtZ
2
p

β2

{
ln

(
2mev

2

〈I〉

)
− ln(2η)− ln(1− β2)

}
. (3.13)

It is worthwhile pointing out some features of the resulting formula:

1. This deduction is somehow simplistic, lacking of better arguments for the integral limits, and of
a thoroughly accurate definition of ν, remaining 〈I〉 undetermined.

2. The term ln(1 − β2) is associated to the relativistic effects when the projectile presents high
kinetic energy. It is made of a squared Lorentz factor, this is γ2, and in following sections the
provenance of both of them will be signaled.
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3. The term with the Sommerfeld parameter ln(2η) is usually presented in literature together with
the first logarithmic term, but it is interesting separating it to compare with the results of next
sections. This term arises as a compromise between the classical and the quantum mechanical
views of the stopping power as explained by Bloch[10] in 1933. The factor 2 accompanying the
Sommerfeld parameter is not exactly 2 as obtained in this small impulse transfer approximation,
and the careful study of next sections will clarify why.

3.2 Classic calculation of Bohr: close collisions

To give support to the parameter definitions of the last section, it is instructive to fulfill Bohr’s
calculation. In the close collision approximation, the high energetic projectile approaches the electron
with and impact parameter b < b1, where b1 is some undetermined limit where it is not possible to
assume the electron as free. Therefore, in this section we will be working in the interval 0 < b < b1,
treating the electron as free given the characteristic time of the collision is much smaller than the
orbital period.

The electron will suffer a momentum transfer from the projectile, whose Lorentz invariant Q2 can
be written in two useful inertial frames:

• Center of mass: located in the projectile, because M >> me. In this frame, the electron has
velocity ~v, and the four-momentum is:

pc.m.i =

(
γmec
γme~v

)
; pc.m.f =

(
γ′mec
γ′me~v

′

)
,

pc.m.f − pc.m.i =

(
0

γme(~v
′ − ~v)

)
⇒ Q2 =

(
pc.m.f − pc.m.i

)2
= −γ2m2

e

(
~v ′ − ~v

)
.

The fact that the energy conserves in the center of mass was used, therefore |~v ′| = |~v|, but any-
thing is said on the possible deflection of the electron. This was implicitly done when assuming
that γ′ = γ. The Lorentz invariant is then:

Q2 = −γ2m2
e

{
|~v ′|2 − 2~v ′ · ~v + |~v|

}
= −γ2mev

2 {2− 2 cos(θscatt)}

= −2γ2m2
ev

2 {1− cos(θscatt)} = −4γ2m2
ev

2 sin2

(
θscatt

2

)
.

• Laboratory frame: in this case, the electron is initially at rest inside the target material. There-
fore the projectile moves with ~v towards the atomic electron. In this case:

pl.f.i =

(
mec

0

)
; pl.f.f =

(
E/c
~p

)
,

pl.f.f − p
l.f.
i =

(
E/c−mec

~p

)
⇒ Q2 =

(
pl.f.f − p

l.f.
i

)2
(
E

c
−mec

)2

− |~p|2 .

Using the relativistic formula E2 = m2
ec

4 + |~p|2c2 and defining the kinetic energy transferred to
the electron as T = E −mec

2 it can be obtained:

Q2 =
�
�
�E2

c2
− 2meE +mec

2 −
�
�
�E2

c2
+m2

ec
2 = −2me(E −mec

2) = −2meT .
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As said, Q2 is a Lorentz invariant, meaning it has the same numerical value in every frame:

−2meT = −4γ2m2
ev

2 sin2

(
θscatt

2

)
T (θscatt) = 2γ2mev

2 sin2

(
θscatt

2

)
. (3.14)

We will rewrite the kinetic energy transferred to the electron (3.14) using Rutherford’s formula
(3.6) with p = γmev in the center of mass frame, and the following trigonometric identity:

sin2

(
θscatt

2

)
=

1

1 + 1

tan2
(
θscatt

2

) =
1

1 + γ2m2
ev

4b2

Z2
pe

4

=

=
Z2
pe

4

γ2m2
ev

4

1
Z2
pe

4

γ2m2
ev

4 + b2
=

Z2
pe

4

γ2m2
ev

4

1

b2min + b2
,

where the definition (3.9) was used. With this, the kinetic energy transferred to the electron in terms
of the impact parameter is obtained:

T (b) =
2Z2

pe
4

mev2

1

b2min + b2
. (3.15)

If θscatt ≈ 0, then according (3.6):

0 ≈ θscatt ∼
2Zpe

2

γmev2b
= 2

bmin
b

⇒ bmin ≈ 0 , (3.16)

and equation (3.15) is reduced exactly to the kinetic energy calculated in (3.3).

As the electron was initially at rest, then T (b) = ∆E(b) and the stopping power definition can be
used with the classical cross section as before:

dS = Ne∆E(b)dσ(b) = Ne

2Z2
pe

4

mev2

2πbdb

b2 + b2min
= K0

ρ

At

ZtZ
2
p

β2

bdb

b2 + b2min
. (3.17)

The integration can be done in the interval of interest without further problems:

S(T ) =

∫ b1

0
dS(b) = K0

ρ

At

ZtZ
2
p

β2

∫ b1

0

bdb

b2 + b2min
=

= K0
ρ

At

ZtZ
2
p

β2

1

2

b21+b2min∫
b2min

dx

x
= K0

ρ

At

ZtZ
2
p

β2

1

2
ln

(
1 +

b21
b2min

)
.

The classic stopping power formula for close collisions is obtained:

Sb<b1(T ) = K0
ρ

At

ZtZ
2
p

β2

1

2
ln

(
1 +

γ2m2
ev

4

Z2
pe

4
b21

)
. (3.18)

As can be seen, this expression depends on an undetermined limit b1 between the free electron ap-
proach and other approximation in which the atomic binding becomes important, where the energetic
transference can produce excitation of the atoms if b < bmax, that is below the adiabatic limit. This
is the distant collision approximation studied in next section.
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Reinterpretation of the calculation

In this non-relativistc close collision calculation, the four-momentum conservation implied that:

T (θscatt) = 2γ2mev
2 sin2

(
θscatt

2

)
≈ 2mev

2 sin2

(
θscatt

2

)
; γ ≈ 1 . (3.19)

meaning T (θscatt) is the energy gained by the electron in the collision process. Also,

sin2
(
θscatt

2

)
=

Z2
pe

4

mev2
1

b2+b2min
was derived and used, writing the stopping power as:

dS = Ne∆E(b)dσ(b) = Ne

2Z2
pe

4

mev2

1

b2 + b2min
bdbdϕ = Ne2mev

2 sin2

(
θscatt

2

)
bdbdϕ . (3.20)

According to Rutherford, tan
(
θscatt

2

)
=

Zpe2

mev2b
⇒ b =

Zpe2

mev2
1

tan
(
θscatt

2

) . Using this:

db =
Zpe

2

mev2

1

tan2
(
θscatt

2

) 1

cos2
(
θscatt

2

) dθscatt
2
⇒ bdb =

(
Zpe

2

mev2

)2 cos
(
θscatt

2

)
sin3

(
θscatt

2

) dθscatt
2

. (3.21)

Taking this to the stopping power:

dS = NeT (θscatt)

(
Zpe

2

mev2

)2 cos
(
θscatt

2

)
sin3

(
θscatt

2

) dϕdθscatt
2

= NeT (θscatt)

(
Zpe

2

mev2

)2 cos
(
θscatt

2

)
sin3

(
θscatt

2

) sin(θscatt)dϕdθscatt
sin(θscatt)2

= NeT (θscatt)

(
Zpe

2

mev2

)2
1

sin4
(
θscatt

2

)dΩ

= NeT (θscatt)
dσRuth
dΩ

dΩ = NeTdσRuth ,

expression that is in accordance to the statistical interpretation of definition (1.9).

3.3 Classic calculation of Bohr: distant collisions

In this section, the bmax limits chosen in (3.10)
will be correctly justified as the plausible repre-
sentation of limit of adiabatic interaction (elas-
tic collision) respect Coulombian interaction with
atomic electrons. Here, some of the assumptions
made in section 3.1 will be used again, for example
the projectile will leave the interaction region with
practically no deflection respect its initial move-
ment direction. The electron will be considered
as describing an harmonically bound trajectory
around the nucleus. To describe this, a laboratory
frame centered in the atomic nucleus responsible
for the electron binding is used, and the electron’s
position is given by some vector ~x.

v⃗

b

O

x⃗

Figure 3.5: Simple sketch of the interaction with
an harmonically bound atomic electron.
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If the impact parameter is sufficiently great, b >> |~x|, then the energy transfer will be small and
the electron’s movement can be considered not relativistic. Also, the electric field of the projectile on
the electron position can be approximated by it’s value at the origin O, that is, the nucleus position.
This is known as the dipolar approximation.

Being the electron non-relativistic, and considering its movement around the nucleus as an har-
monic oscillation with small amplitude, we can approximate |~̇x| = |~vel| ∼ 0, and consequently,
~vel × ~B ∼ 0 is justified, neglecting the magnetic field effects.

It will also be included in the model, only for completing the theoretical view, a small damping
constant Γ ≈ 0, such that if the characteristic oscillation angular frequency is ω0 then the harmonic
force equation with the second Newton’s law stands for:

me~a =
∑

~Fext = ~FΓ + ~Fω0 + ~F ~E ⇒ ~̈x+ γ~̇x+ ω2
0~x = − e

me

~E . (3.22)

We lack the expression of the electric field ~E that feels the electron due to the presence of the
projectile. Obtaining this requires explicit relativistic calculations and will be dealt with later. Now,
it is preferable to remember how this kind of force equations can be solved to obtain ~x. The idea is
rather simple, making a Fourier analysis that spectrally decomposes the involved functions in terms
of the harmonic components of frequency ω. This is:

F (~x(t)) =
1√
2π

∫ ∞
−∞

~x(ω)e−iωtdω ; F
(
~E(t)

)
=

1√
2π

∫ ∞
−∞

~E(ω)e−iωtdω . (3.23)

The Fourier transform presents the following properties that will be used:

F(ḟ(t)) = −iωF(f(t)) ; F(f (n)(t)) = (−iω)nF(f(t)) . (3.24)

Consequently, F
(
~̇x
)

= −iωF (~x) and F
(
~̈x
)

= −ω2F (~x). Taking everything to the force equation

for ~c we obtain:

− ω2

√
2π

∫ ∞
−∞

~x(ω)e−iωtdω− iωΓ√
2π

∫ ∞
−∞

~x(ω)e−iωtdω+
ω2

0√
2π

∫ ∞
−∞

~x(ω)e−iωtdω =
e

me

1√
2π

∫ ∞
−∞

~E(ω)e−iωtdω ,

which is solver only when the integrands coincides. This leaves us with an algebraic equation for the
spectral components of the electron’s position ~x and the projectile’s electric field ~E:

−ω2~x(ω)− iωΓ~x(ω) + ω2
0~x(ω) = − e

me

~E(ω)

~x(ω)
(
−ω2 − iωΓ + ω2

0

)
= − e

me

~E(ω) ,

and therefore, the solution for the spectral amplitudes of the electron’s position is:

~x(ω) =
e

me

~E(ω)
1

ω2 − ω2
0 + iωΓ

. (3.25)

Then, Fourier transforming the integral equation, we obtained an easily solved algebraic equation
in terms of the electric field amplitude for frequency ω. This is just an ingredient of the deduction
of the stopping power, as we will like to quantify the energy transferred in the interaction. We know
that the electric field exerts a work on a charge q = −e that moves d~x in its presence as viewed from
O:

dW = ~F (t) · d~x = q ~E(t) = −e ~E(t) · d~x

= −e ~E(t) · d~x
dt
dt = −e ~E(t) · ~̇xdt .
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Then, the energetic transference along the trajectory ~x(t) of the electron whilst the time passes
from very long before and very long after the interaction is:

∆E = −e
∫ ∞
−∞

~E(t) · ~̇xdt . (3.26)

We are obviously assuming that ~E has a compact support in time. In this formula, the Fourier
transforms of the integrand factors will be used, rewritten as follows not to mix up variables:

~x(t) =
1√
2π

∫ ∞
−∞

~x(ω)e−iωtdω ; ~̇x(t) =
−i√
2π

∫ ∞
−∞

~x(ω)ωe−iωtdω ; ~E(t) =
1√
2π

∫ ∞
−∞

~E(Ω)e−iΩtdΩ ,

and therefore:

∆E =
ie

2π

∫ ∞
−∞

dω ω

∫ ∞
−∞

dΩ

∫ ∞
−∞

dt ~x(ω) · ~E(Ω)e−i(ω+Ω)t .

We already know that independently of the normalization used to define the Fourier transforms,
the exponential function satisfies that

∫
e−i(ω+Ω)tdt = (2π)δ(ω+Ω), where δ is the Dirac’s delta. With

this:

∆E = ie

∫ ∞
−∞

dω ω

∫ ∞
−∞

dΩ ~x(ω) · ~E(Ω)δ(Ω− (−ω)) = ie

∫ ∞
−∞

dω ω ~x(ω) · ~E(−ω) .

Moreover, ~x and ~E must be real quantities to be physical, and therefore ~E(−ω) = ~E∗(ω). With
this, we can keep on working the energy transfer, also replacing ~x(ω) by equation (3.25).

∆E = ie

∫ ∞
−∞

dω ω ~x(ω) · ~E∗(ω)

= ie

∫ ∞
−∞

dω ω
e

me

~E(ω) · ~E∗(ω)
1

ω2 − ω2
0 + iωΓ

=
e2

me

∫ ∞
−∞

dω | ~E(ω)|2 iω

ω2 − ω2
0 + iωΓ

.

It is convenient to rewrite the complex function of ω appearing on the integrand using its real and
imaginary parts.

iω

ω2 − ω2
0 + iωΓ

=
iω(ω2 − ω2

0 − iωΓ)

(ω2 − ω2
0)2 + ω2Γ2

=
ω2Γ

(ω2 − ω2
0)2 + ω2Γ2

+ i
ω(ω2 − ω2

0)

(ω2 − ω2
0)2 + ω2Γ2

.

If Γ ∼ 0, both real and imaginary parts presents a high peak centered at ω0. Therefore, assum-
ing | ~E(ω)|2 ≈ | ~E(ω0)|2 is not wrong, consequently the interaction proceeds mainly when there is a
resonance of the electric field component whose frequency coincides with the characteristic atomic
electron’s frequency. After using this, the factor | ~E(ω0)|2 can be taken out the integral, and using
that the imaginary part is odd in ω while the real part is even, the energy transfer is:

∆E =
2e2Γ

me
| ~E(ω0)|2

∫ ∞
0

ω2

(ω2 − ω2
0)2 + ω2Γ2

dω . (3.27)

The remaining integral can be solved using that ω0
Γ → ∞, or equivalently Γ ∼ 0, but if not using

this approximation nothing can be said at first. In his book Classical Electrodynamics, Jackson[11]
says that the integral’s solution is the same independently of the value of ω0

Γ but this is not strictly
true. The solution depends strongly on the limit ω0/Γ >> 1. Making a first the change of variables
u = ω0/Γ, then y = u− ω0

Γ , and finally z = 2y, the calculation can be handled as follows:
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∫ ∞
0

Γω2

(ω2 − ω2
0)2 + ω2Γ2

=

∫ ∞
0

ΓΓ2u2Γdu

(Γ2u2 − ω2
0)2 + u2Γ4

=

∫ ∞
0

u2(
u2 − ω2

0
Γ2

)2
+ u2

du =

=

∫ ∞
0

du(
u2−

ω2
0

Γ2

)2

+u2

u2 + 1

=

∫ ∞
−ω0/Γ

dy

1 +
(y2+2y

ω0
Γ )

2

y2+2y
ω0
Γ

ω2
0

Γ2

=

=

∫ ∞
ω0/Γ

dy

1 +
(y2+2y

ω0
Γ )

2

ω2
0

Γ2

(
Γ2

ω2
0
y2+2y Γ

ω0
+1

) ∼
∫ ∞
−∞

dy

1 +
(y2+2y

ω0
Γ )

2

ω2
0

Γ2

=

=

∫ ∞
∞

dy

1 +
(

Γ
ω0
y2 + 2y

)2 ∼
∫ ∞
−∞

dy

1 + 4y2
=

1

2

∫ ∞
−∞

dz

1 + z2
=

=
1

2
arctan(z)

∣∣∣∣∞
−∞

=
π

2
.

When the symbol ∼ appears, the approximation Γ << ω0 was used, and thereby the integral value
depends strongly on this assumption. With this calculation, the energy transfer stands for:

∆E =
2e2

me
| ~E(ω0)|2π

2
⇒ ∆E =

πe2

me
| ~E(ω0)|2 . (3.28)

Despite all the approximations used, formula (3.28) is quite general. The only remaining unknown
ingredient is the Fourier transform of the electric field generated by the projectile in O, that is the
same the electron feels at ~x using the dipolar approximation. This is a completely different problem
and that is why we take care of it last. Consider a second frame O′ attached to the projectile. In this
frame, the projectile is “at rest”, and therefore writing the electric field it produces is easy. It will
be assumed that at t = t′ = 0 s the frames axis are parallel and coincident except O′ is at a distance
b from O. Figure 3.6 shows what happens for t′ < 0 s. The observation point O seen from O′ have
coordinates:

b

v⃗

r⃗ '

O'

O

t '

x '

z '

x

z

t

Figure 3.6: Frames O and O′ used to calculate the
electric field at eletron’s position.

x ′
µ

=


t′

x′

y′

z′

 =


t′

−b
0
−vt′

 ⇒ r′ =
√
b2 + v2t′2 .

And with this, writing the electric field in com-
ponents is straightforward:

~E ′(x′) =
Zpe

r′3
~r ′ = E′xî

′ + E′zk̂
′

= −Zpeb
r′3

î ′ − Zpevt
′

r′3
k̂ ′ .

Rewriting this in the frame O requires the corresponding Lorentz transformation. In this case, as
~B ′ = 0, the transformation of the field is easy:

Ex = γE′x ; Ey = 0 = E′y ; Ez = E′z , (3.29)
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and with this:

~E(x′) = − Zpebγ

(b2 + v2t′2)3/2
î− Zpevt

′

(b2 + v2t′2)3/2
k̂ , (3.30)

where the versors transformation is trivial because the axis are parallel in Cartesian coordinates. It
remains to apply the Lorentz transformation to the coordinates. The only coordinate of O′ that
remains variable is t′. We know (see Jackson[11]) that for this ct′ = γ(ct− βz), but the coordinate z
of O as seen from O is exactly z = 0. Therefore t′ = γt. With this, the electric field produced by the
projectile on the electron position as seen from the observer O in the atomic nucleus is:

~E(t) = − Zpebγ

(b2 + γ2v2t2)3/2
î− Zpeγvt

(b2 + γ2v2t2)3/2
k̂ . (3.31)

The dependence in t show the symmetry used in the small impulse approximation of section 3.1.
In figure 3.7 both components are drawn using that every other parameter is a constant with unity
value.
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Figure 3.7: Electric field components affecting the
electron as seen from atomic nucleus.

The parity of the electric force components be-
comes evident, and the symmetry used to keep
the traversal component of the field shown in fig-
ure 3.2 is now supported by theoretical means. It
is worthwhile to mention that the shape of the
x-component (corresponding to the traversal of
section 3.1) is that of a compact support signal
in time. This helps to create the picture of a
short duration perturbation applied to the atom.
Now, the Fourier transform will be applied to both
component of the fields separately, because this
will lead to the appearance of special function re-
lated to the cylindrical symmetry of the problem,
and different relations between them are needed to
move forward. We begin with the x-component.

Ex(ω) = −Zpebγ√
2π

∫ ∞
−∞

eiωt

(b2 + γ2v2t2)3/2
dt = − Zpeγ√

2πb2

∫ ∞
−∞

eiωt(
1 +

[γvt
b

]2)3/2
dt

= − Zpe√
2πvb

∫ ∞
−∞

e
i bω
γv
u

(1 + u2)3/2
du ,

where u = γv
b t was used. According to Abramowitz and Stegun[12], the modified Bessel functions

of the second kind satisfy:

Kν(xz) =
Γ
(
ν + 1

2

)
(2z)ν

√
πxν

∫ ∞
0

cos(xt)

(t2 + u2)ν+1/2
dt . (3.32)

Replacing t = u, z = 1, ν = 1 and x = bω
γv leads to:

K1

(
bω

γv

)
=

2Γ(3/2)
√
π bωγv

∫ ∞
0

cos
(
bω
γvu
)

(1 + u2)3/2
du . (3.33)

Using that cos(x) is even and sin(x) is odd, and Γ(3/2) = Γ(1 + 1/2) = 1
2Γ(1/2) =

√
π

2 , then:
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K1

(
bω

γv

)
=

γv

2bω

∫ ∞
−∞

e
i bω
γv

(1 + u2)3/2
du ⇒

∫ ∞
−∞

e
i bω
γv

(1 + u2)3/2
du =

2bω

γv
K1

(
bω

γv

)
. (3.34)

Then, the x-component of the electric field can be written as:

Ex(ω) = − 2Zpeω√
2πγv2

K1

(
bω

γv

)
. (3.35)

A similar calculation can be used to estimate the z-component. In this case:

Ez(ω) =
1√
2π

∫ ∞
−∞

(−Zpeγvt)eiωt

(b2 + γ2v2t2)3/2
dt = −Zpeγv√

2π

∫ ∞
−∞

teiωt

b3
(

1 +
[γv
b t
]2)3/2

= − Zpe√
2πγvb

∫ ∞
−∞

ue
i bω
γv
u

(1 + u2)3/2
du ,

where again u = γv
b t. To continue the calculation, we use a recurrence relation[12]. If Lν(x) =

eiπνKν(x), then:

dLν
dx

(x) = Lν−1(x)− 1

x
Lν(x) and setting ν = 1;

dL1

dx
(x) = L0(x)− 1

x
L1(x) ;

L0(x) =
dL1

dx
(x) +

1

x
L1(x) ⇒ K0(x) = −dK1

dx
(x)− 1

x
K1(x) .

Using equation (3.32) with ν = 1 and z = 1 is easy to see that:

dK1

dx
(x) = − 1

2x2

∫ ∞
−∞

eixt

(1 + t2)3/2
dt+

1

2x

∫ ∞
−∞

iteiωt

(1 + t2)3/2
dt ,

and therefore:

K0(x) =
�����������

1

2x2

∫ ∞
−∞

eixt

(1 + t2)3/2
dt − i

2x

∫ ∞
−∞

teixt

(1 + t2)3/2
dt−

�����������
1

2x2

∫ ∞
−∞

eixt

(1 + t2)3/2
dt

=
1

2ix

∫ ∞
−∞

teixt

(1 + t2)3/2
dt .

Making the substitution x = bω
γv , we finally obtain:∫ ∞
−∞

ue
i bω
γv
u

(1 + u2)3/2
du = 2i

bω

γv
K0

(
bω

γv

)
, (3.36)

and consequently, the z-component can be written as:

Ez(ω) = −i
√

2

pi

Zpeω

γ2v2
K0

(
bω

γv

)
. (3.37)

Now that we have the components of the electric field in the Fourier decomposition, the amplitude
| ~E(ω0)| can be evaluated to estimate the energy deposition by equation (3.28).

| ~E(ω0)| = E2
x(ω0) + E2

z (ω0) = 4
Z2
pe

2ω2
0

2πγ2v4
K2

1

(
bω0

γv

)
+

2

π

Z2
pe

2ω2
0

γ4v4
K2

0

(
bω0

γv

)
=

2

π

Z2
pe

2

v2b2
ξ2K2

1 (ξ) +
2

π

Z2
pe

2

γ2v2b2
ξ2K2

0 (ξ) =
2

π

Z2
pe

2

v2b2

{
ξ2K2

1 (ξ) +
ξ2

γ2
K2

0 (ξ)

}
.
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Now we are able to give an expression for the energy deposition in classical distant collision
approximation:

∆E =
2Z2

pe
4

mev2b2

{
ξ2K2

1 (ξ) +
ξ2

γ2
K2

0 (ξ)

}
. (3.38)

This formula represents the energy transfer to an atomic electron by a projectile of charge Zpe that
passes an impact parameter b distance from the atomic nucleus. To estimate the material stopping
power this quantity must be laboured as in previous sections, but in this case it is convenient to
analyze the behavior of the modified Bessel functions of the second kind for the small and asymptotic
argument limits[12]:

ξ << 1 −→
K0 ∼ −γ − ln

(
ξ
2

)
,

K1 ∼ Γ(1)
2

2
ξ = 1

ξ ,
(3.39)

ξ >> 1 −→ Kν(ξ) ∼
√
π

2ξ
e−ξ , (3.40)

where γ ≈ 0.5772 · · · is known as the Euler-Mascheroni constant.
Consider, for example, the small argument limit of (3.38):

∆E(ξ << 1) ∼
2Z2

pe
4

mev2b2

{
ξ2 1

ξ2
+

1

γ
ξ2

(
−γ − ln

(
ξ

2

))2
}

=
2Z2

pe
4

mev2b2
+O(ξ2) ,

that is exactly the energy deposition that we found in section 3.1 during the small impulse transfer
deduction. Therefore, this calculation was valid only if ξ = bω0

γv << 1, or b
γv <<

1
ω0

= T which is
exactly the assumption we made, that is, the characteristic time of the collision is much smaller than
the orbital period of the electron.

If we look in the complete opposite direction, towards large arguments, we can see that:

∆E(ξ >> 1) ∼
2Z2

pe
4

mev2b2

{
ξ2 π

2ξ
e−2ξ +

1

γ2
ξ2 π

2ξ
e−2ξ

}
=

2Z2
pe

4

mev2b2

{
1 +

1

γ2

}
ξe−2ξ → 0 if ξ →∞ .

In this case, if ξ = bω0
γv = b

bmax
>> 1, then b >> bmax with bmax = γv

ω0
, and consequently ∆E = 0.

This correctly justifies the choice of the adiabatic radius of Bohr as the limit of zero energy transfer
in section 3.1.

To complete the stopping power deduction, our definition will be used again, but this time we have
associated to each electron a different harmonic frequency ω0. Naming them with an index label, ωa,
it is important to understand that the electron density must be written differently because of this. If
only a fraction fa of the Zt electrons of the atom presents characteristic frequency ωa, then Na = Nfa
is the density of electrons oscillating with ωa, being N the density of atoms. Therefore:

Ne =
∑
a

Na =
∑
a

Nfa = N
∑
a

fa , (3.41)

and on the other hand we already know that Ne = NZt, consequently we obtain the following sum
rule:
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∑
a

fa = Zt . (3.42)

This is important for several reasons that will be explained later. Now, using this definition and
the classical cross section again, the stopping power can be calculated:

Sb>b1(T ) =
∑
a

Na

∫
∆Ea(b)dσ(b) = 2π

∑
a

Na

∫ bmax

b1

∆E(b)bdb =

= 2πN
∑
a

fa

∫ ∞
b1

∆E(b)bdb =
4πNZ2

pe
4

mev2

∑
a

fa

∫ ∞
b1

{
ξ2
aK

2
1 (ξa) +

ξ2
a

γ2
K2

0 (ξa)

}
db

b

=
4πNZ2

pe
4

mev2

∑
a

fa

{∫ ∞
ξ1,a

K2
1 (ξa)ξadξa +

1

γ2

∫ ∞
ξ1,a

K2
0 (ξa)ξadξa

}
,

where ∆E(ξ >> 1) ∼ 0 was used, and ξ1,a = b1ωa
γv . It is convenient to work on the integrals separately.

They can be found on tables such as Abramowitz and Stegun[12]:

∫ ∞
ξ1,a

K2
1 (ξa)ξadξa =

ξa
2

{
ξaK

2
1 (ξa)− ξaK2

0 (ξa)− 2K0(ξa)K1(ξa)
}∣∣∣∣∞
ξ1,a

,∫ ∞
ξ1,a

K2
0 (ξa)ξadξa =

ξ2
a

2

{
K2

0 (ξa)−K2
1 (ξa)

}∣∣∣∣∞
ξ1,a

.

Using the asymptotic behavior Kν(ξ) ∼ e−ξ ∼ 0, this results in:

∫ ∞
ξ1,a

K2
1 (ξa)ξadξa =

ξ1,a

2

{
ξ1,aK

2
0 (ξ1,a)− ξ1,aK

2
1 (ξ1,a) + 2K0(ξ1,a)K1(ξ1,a)

}
,∫ ∞

ξ1,a

K2
0 (ξa)ξadξa =

ξ2
1,a

2

{
K2

1 (ξ1,a)−K2
0 (ξ1,a)

}
.

Taking this to Sb>b1 and with some algebraic work done:

Sb>b1(T ) =
4πNZ2

pe
4

mev2

∑
a

fa

{
ξ2

1,a

2
K2

0 (ξ1,a)−
ξ2

1,a

2
K2

1 (ξ1,a) + ξ1,aK0(ξ1,a)K1(ξ1,a)+

+
1

γ2

ξ2
1,a

2
K2

1 (ξ1,a)−
1

γ2

ξ2
1,a

2
K2

0 (ξ1,a)

}

=
4πNZ2

pe
4

mev2

∑
a

fa

{
ξ2

1,a

2
K2

0 (ξ1,a)

(
1− 1

γ2

)
+ ξ1,aK0(ξ1,a)K1(ξ1,a)−

−
ξ2

1,a

2
K2

1 (ξ1,a)

(
1− 1

γ2

)}

=
4πNZ2

pe
4

mev2

∑
a

fa

{
ξ1,aK0(ξ1,a)K1(ξ1,a)−

β2ξ2
1,a

2
(K2

1 (ξ1,a)−K2
0 (ξ1,a))

}
. (3.43)

In general, the projectile velocity v is much greater than the electron orbital velocity, and therefore
ξ1,a = b1ωa

γv << 1. It is convenient (although not mandatory) to approximate:

K0(ξ1,a) ∼ −γ − ln

(
ξ1,a

2

)
; K1(ξ1,a) ∼

1

ξ1,a
, (3.44)
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and using this in the bracketed factor of Sb>b1 :

ξ1,aK0(ξ1,a)K1(ξ1,a)−
β2ξ1,a

2
(K2

1 (ξ1,a)−K2
0 (ξ1,a)) '

' −γ − ln

(
ξ1,a

2

)
−
β2ξ2

1,a

2

(
1

ξ2
1,a

−
(
γ + ln

(
ξ1,a

2

)))

= −γ − ln

(
ξ1,a

2

)
− β2

2
+O(ξ1,a) ∼ ln

(
2e−γ

ξ1,a

)
− β2

2
.

When taking this to Sb>b1 , the summation over a puts a Zt factor due to the sum rule (3.42) in
every term independent of a, but the term that depends on a via ξ1,a must be worked in the following
way:

∑
a

fa ln

(
2e−γ

ξ1,a

)
=

∑
a

fa ln

(
2e−γγv

b1ωa

)
= Zt ln

(
2e−γγv

b1

)
−
∑
a

fa ln(ωa)

= Zt ln

(
2e−γγv

b1

)
− Zt

∑
a
fa ln(ωa)∑
a
fa

.

We identify the second term as a logarithmic average of the characteristic frequencies, with a
statistical weight given by the fraction of electrons with the respective frequency. We consequently
define:

ln(〈ω〉) =

∑
a
fa ln(ωa)∑
a
fa

=
1

Zt

∑
a

fa ln(ωa) . (3.45)

This is our very first theoretical definition of the mean excitation potential 〈I〉 = }〈ω〉. With this,
the bracketed term we were working reads:

ξ1,aK0(ξ1,a)K1(ξ1,a)−
β2ξ1,a

2
(K2

1 (ξ1,a)−K2
0 (ξ1,a) ' Zt

{
ln

(
2e−γγv

b1〈ω〉

)
− β2

2

}
.

If, at this point, we decide to use b1 = bmin =
Zpe2

meγv2 , which was the classical inferior limit defined
in section 3.1 for the maximum energy transference in a frontal collision, it can be seen that:

ln

(
2e−γγv

〈ω〉bmin

)
= ln

(
2mev

2

}〈ω〉

)
− ln

(
Zpe

2e−γ

}γ2v

)
= ln

(
2mev

2

}〈ω〉

)
− ln

(
eγη
)
− ln(1− β2) .

Gathering everything in the stopping power formula, which now does not depend on b1, we obtain:

S(T ) =
4πNZ2

pe
4

mev2
Zt

{
ln

(
2mev

2

}〈ω〉

)
− ln

(
eγη
)
− ln(1− β2)− β2

2

}
. (3.46)

Recognizing the constant K0 = 4πNAe
4

mec2
with N = ρNA

At
and then, the final expression reads:

S(T ) = K0
ρ

At

ZtZ
2
p

β2

{
ln

(
2mev

2

}〈ω〉

)
− ln

(
eγη
)
− ln(1− β2)− β2

2

}
. (3.47)

In comparison with formula (3.13), there are a lot of things to say about this result:
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1. It presents a formal definition of the mean excitation potential for pure material and in the ideal
gas approximation, namely low density:

ln(〈I〉) =

∑
a
fa ln(}ωa)∑
a
fa

. (3.48)

2. Introduction of a small correction β2/2, small even at high energy of the projectile, but related
with the spin when the correct connection of quantum mechanics with special relativity is used
to determine the stopping power.

3. Consistent explanation of the term ln(1 − β2) = ln(γ2). One of the γ factors comes from the
definition of maximum energy transfer in a frontal collision for a relativistic projectile (bmin ∼
O(1/γ)). The other factor comes from the change in the form of the electric field under a Lorentz
transformation. This means that this term is purely relativistic. Another way of interpreting
it is: as we are solving distant collisions, when the projectile has high energy β2 ∼ 1 and
− ln(1− β2)→∞, meaning the electric field is more effective for transferring energy at distant
collisions if the particle that generated it is relativistic.

4. Give γ ' 0.5572 · · · , then exp(γ) ' 1.781 · · · , not exactly 2 as in formula (3.13). This term in
fact is a nexus showing the validity of the classical or the quantum mechanical approach, and is
sometimes called the Bohr factor κ = eγη. More will be said when studying the Bloch correction.

5. It is important to note that a choice of b1 was made, namely b1 = bmin. This is not mandatory,
and in the next section, a conciliation between the distant and close collisions stopping power
formulas will be shown leaving b1 undetermined.

3.4 Conciliation between classical close and distant collisions

For this part, we will consider that there exists only one type of electron with characteristic frequency
ω0. Then, the stopping power for the close and distant collisions might be read from formulas (3.18)
and (3.43) respectively:

Sb<b1(T ) =
4πNeZ

2
pe

4

mev2

1

2
ln

(
1 +

[
γmev

2

Zpe2
b1

]2
)
, (3.49)

Sb>b1(T ) =
4πNeZ

2
pe

4

mev2

{
ξ1K0(ξ1)K1(ξ1)− β2ξ2

1

2
(K2

0 (ξ1)−K2
1 (ξ1))

}
. (3.50)

Here, ξ1 = b1ω0
γv . It can be seen (see figure 3.8) that this expressions diverge in the corresponding

limits where the approximation used to calculate them fails, namely:

Sb<b1 →∞
b1 →∞ ;

Sb>b1 →∞
b1 → 0

.

The calculations for figure 3.8 were done by imposing b1 the limits bmin =
Zpe2

γmev2 and bmax = γv
〈ω〉 ,

where 〈ω〉 was calculated from the mean excitation potential of each material, and the kinetic energy
was set to β = 0.5.
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Figure 3.8: Mass stopping power for close and distant collisions respectively, as a function of b1.

Then, we must analyze how to approximate Sb<b1 and Sb>b1 in the limits where the approximation
remains valid. In the case of Sb<b1 , it is convenient thinking that b1 >> bmin, that is the classical
limit associated with the maximum energy transfer in a frontal collision, and therefore can be thought
of as the “size” of the scattering center. In this approximation:

Sb<b1(T ) ∼
4πNeZ

2
pe

4

mev2

1

2
ln

([
γmev

2

Zpe2
b1

]2
)

=
4πNeZ

2
pe

4

mev2
ln

(
γmev

2

Zpe2
b1

)
.

For Sb>b1 , and as already done in section 3.3, we choose b1 <<
γv
ω0

, corresponding to the limit
of inefficient energy transfer or adiabatic process. Using the limiting forms of the modified Bessel
functions of the second kind again we obtain:

Sb>b1 ∼
4πNeZ

2
pe

4

mev2

{
−γ − ln

(
ξ1

2

)
− β2ξ2

1

2

(
1

ξ2
1

−
(
γ + ln

(
ξ1

2

))2
)}

=
4πNeZ

2
pe

4

mev2

{
ln

(
2e−γ

ξ1

)
− β2

2
+
β2ξ2

1

2

(
γ + ln

(
ξ1

2

))2
}
.

The conciliation is simple adding this approximate forms of Sb<b1 and Sb>b1 , which gives:

S(T ) = Sb<b1(T ) + Sb>b1(T )

=
4πNeZ

2
pe

4

mev2

{
ln

(
2e−γ

��b1ω0
γv
γmev2

Zpe2 ��b1

)
− β2

2
+
β2ξ2

1

2

(
γ + ln

(
ξ1

2

))2
}

=
4πNeZ

2
pe

4

mev2

{
ln

(
2mev

2

}ω0

)
− ln

(
eγη
)
− ln(1− β2)− β2

2
+
β2ξ2

1

2

(
γ + ln

(
ξ1

2

))2
}
.(3.51)

This is exactly the formula (3.47) without a mean frequency defined, and with an additional term,
that in section 3.3 was neglected for being O(ξ2

1).

So far, every stopping power formula we derived, presents the same form. It consists of a constant
we called K0, factors depending on the material and the projectile, and a number L, such that:
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S(T ) = K0
ρ

At

ZtZ
2
p

β2
L(β) . (3.52)

This factor L is called the stopping number. The leading form of the stopping number is:

L(β) = ln

(
2mev

2

}〈ω〉

)
− ln(1− β2)− β2

2
, (3.53)

being every other term simply corrections for different effects. For example, the Bohr’s stopping
number is:

LBohr(β) = ln

(
2mev

2

}〈ω〉

)
− ln

(
eγη
)
− ln(1− β2)− β2

2
. (3.54)

The correction term added in formula (3.51) will be called Lcorr(β, b1) =
β2ξ2

1
2

(
γ + ln

(
ξ1
2

))2
. This

can be proved to be a very small correction almost independent of the value of b1. For this, setting
the b1 limits as in figure 3.8, the correction ratio 100 Lcorr

LBohr
was calculated.
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Figure 3.9: Correction term of compromise between close and distant collisions as a function of b1.

Figure 3.9 is a plot of this ratio for a bunch of materials, showing a relative maximum correction
of 0.2% respect the leading Bohr term for the heavier material. This express the non-sensibility of the
classical theory to the choice of b1. Therefore, this term can be safely neglected.

With the remaining formula (3.51), the definition of a mean frequency for different characteristic
oscillation of the electrons can be deduced in the same exact form as already done in section 3.3.



Chapter 4

Quantum Stopping Power

Other problem concerning quantum mechanical application to the energy transfer is that the atom is
known to absorb energy in definite energy jumps. Thereby, there exists cases where our evaluation
of ∆E presents values too low to be absorbed by the atom. This means that the classical picture of
“small energy transfer per collision” is not correct. An theoretical idea of solution to this problem
is extending the notion of energy transfer as if it were a statistical quantity associated with many
collisions instead to only one. This idea will be further explored later. Now I would like to focus on
making a conciliation between the close and distant collisions approaches to give our final classical
expression for the stopping power, not depending on an undetermined limit b1.

4.1 Heisenberg uncertainty principle approximation

When studying the stopping power in the impulse transfer approximation, we derived equation (3.11),
that we rewrite here:

S(T ) =
4πNeZ

2
pe

4

mev2
ln

(
bmax
bmin

)
, (4.1)

where the choices of limits was determined by classical arguments such as the maximum energy
transferred in a single collision or the impact parameter from which the process becomes adiabatic. If
we think in terms of quantum mechanics, particles presents the wave-particle duality in their behavior.
If we were able to construct a wave packet giving some sense to a classical trajectory, that path can
only be defined approximately due to the Heisenberg uncertainty principle ∆x & }

p . If there exists an

impact parameter lower than this, every classical concept fails. Then, the limit b1 ' }
p seems to be

more accurate respect a quantum compatible energy transference. Given that lighter particles present
higher uncertainty, it is convenient to define the quantum limit bq1 using the electron as reference. From
the reference frame attached to the projectile, the electron moves slowly in its orbit, and therefore its
lineal momentum is mainly p = γmev. With this bq1 = }

γmev
. Comparing this with the limit defined

classically we can see that:

bmin
bq1

=
Zpe

2

γmev2

γmev

}
=
Zpe

2

}v
= η . (4.2)

Again, the Sommerfeld parameter appears as connection between classical and quantum mechan-
ical approximations.

If we use this limit in (3.11) instead of the classical bmin, we can see that:

33
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S(q)(T ) =
4πNeZ

2
pe

4

mev2
ln

(
bmax

b
(q)
min

)

=
4πNeZ

2
pe

4

mev2
ln
(γv
ν

γmev

}

)
= K0

ρ

At

ZtZ
2
p

β2

{
ln

(
mev

2

}ν

)
− ln(1− β2)

}
.

This is merely an approximation of what we expect to obtain with the quantum mechanical cal-
culation. This case does not predict the high energy correction β2/2 and sub-estimates the leading
logarithm by a factor 2. It will be shown that the factor 2 is corrected in the final quantum version of
the stopping power, but the term β2/2, does not appear unless the calculation is made a the relativistic
quantum mechanics framework, that naturally includes spin.

4.2 Quantum calculation by Bethe

To analyze the stopping power from a quantum mechanical point of view, the perturbation theory will
be used, together with the first Born approximation. We need to be capable of modeling the interaction
of a projectile of charge Zpe and mass M with an atom of Zt electrons forming a closed system with
the atomic nucleus. Therefore, the hamiltonian of the system should be Ĥ = Ĥat+Ĥpart+Ĥint where:

• Ĥat is the full atomic hamiltonian, described by a set of coordinates for each electron, that we
will call A = {~r1, · · · , ~rZt}, and eigenfunctions ϕn(A).

• Ĥpart is the projectile’s hamiltonian thought of as a free particle, with eigenfunction exp(i~k · ~r),
i.e. and incident wave.

• Ĥint is the interaction hamiltonian, must contain a projectile-nucleus term, and the interaction
with the Zt atomic electrons.

The extended mathematical form that we will use is the next:

Ĥpart =
p2

2M
; p = −i}∇ ; (4.3)

Ĥat =

Zt∑
i=1

{
p2
i

2me
− Zte

2

ri

}
+

Zt∑
i=1

i−1∑
k=1

e2

|~ri − ~rk|
; pi = −i}∇i ; (4.4)

Ĥint =
ZtZpe

2

r
−

Zt∑
i=1

Zpe
2

|~r − ~ri|
. (4.5)

As already said, the interaction term will be worked in the perturbation theory, using as reference
states the ones from the free hamiltonian Ĥ0 = Ĥat + Ĥpart. This states can be written as |ψn〉 =

|ϕn〉 ⊗ |~k〉, so that using a coordinate representation:

〈~r1 · · ·~rZt |ϕn〉 = ϕn(A) ,

〈~r |~k〉 = exp(i~k · ~r) .

The atom will be considered to be in its ground state ϕ0, and the probability that the interaction
causes a transition from ψ0 to ψn is T0n = 〈ψn|Ĥint|ψ0〉. This calculation is by definition:
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T0n =

∫
dZtA d3~r

(
e−i

~kn·~rϕ∗n(A)
)
Ĥint

(
ϕ0(A)ei

~k0·~r
)

=

∫
dZtA d3~r e−i(

~kn−~k0)·~r ϕ∗n(A)Ĥintϕ0(A)

=

∫
d3~r ei~q·~r Vn(~r ) ; ~q = ~k0 − ~kn .

The last expression is the first order Born approximation term applied to the effective potential
Vn(~r ), defined by:

Vn(~r ) =

∫
dZtA ϕ∗n(A)Ĥintϕ0(A) . (4.6)

Before working with this potential, is is convenient to re-write T0n using the following property:

∇
(
ei~q·~r

)
= i~qei~q·~r ⇒ ∇2

(
ei~q·~r

)
= −q2ei~q·~r ⇒ ei~q·~r = − 1

q2
∇2
(
ei~q·~r

)
,

and consequently:

T0n = − 1

q2

∫
d2~r Vn(~r )∇2

(
ei~q·~r

)
= − 1

q2

[∫
d3~r ei~q·~r ∇2Vn(~r ) +

∫
∂V

(
ei~q·~r ∇Vn(~r )− Vn(~r ) ∇

(
ei~q·~r

))
· n̂dS

]
,

where a Green identity has been used. The integration is performed in V = R3, therefore ∂V is a
surface “closed at infinity”. Both terms in the integrand vanishes when evaluated at infinity, because
Vn takes values near the projectile, and ∇Vn represents the force applied to it due to the presence of
the atom. Both quantities present compact support near the projectile. The remaining term depends
on ∇2Vn, thereby this is the moment to check this effective potential properties. From its definition,
only Ĥint depends of ~r on Vn, and consequently:

∇2Vn(~r ) =

∫
dZtA ϕ∗n(A)

(
∇2Ĥint

)
ϕ0(A)

=

∫
dZtA ϕ∗n(A) Zpe

[
Zte∇2

(
1

r

)
−

Zt∑
i=1

e∇2

(
1

|~r − ~ri|

)]
ϕ0(A)

= −4πZpe
2

∫
dZtA ϕ∗n(A)

[
Ztδ(~r )−

Zt∑
i=1

δ(~r − ~ri)

]
ϕ0(A) .

The differential equation to be solved is thus:

∇2Vn(~r ) = −4πZpe
2 [Ztδ(~r )δn,0 − ρn(~r )] , (4.7)

that is a Green inhomogeneous equation. To complete the last steps of the calculation, the following
properties has been used:

• ∇2
(

1
|~r−~ri|

)
= −4πδ(~r − ~ri).

•
∫
dZtA ϕ∗n(A)ϕ0(A) = δn,0, atomic eigenfunctions orthogonality.

• ρn(~r ) =
Zt∑
i=1

∫
dZtA δ(~r − ~ri) ϕ∗n(A)ϕ0(A).
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One of the possible ways of describing the inhomogeneous Green equation solution is by calculation
of the asociated Green function, that in this particular case stands for:

Vn(~r ) = Zpe
2

{
Ztδn,0
r
−
∫
d3~r

ρn(~r )

|~r − ~ri|

}
. (4.8)

From this, it is clear that ρn plays the role of electric charge distribution of the atom in the nth
state. Also, if n = 0, there will be no atomic transition, and the corresponding interaction can be
thought of as elastic. Then, to enforce energy transfer, n 6= 0, and this implies δn,0 = 0 always.
The first term of Vn is consequently zero, and this is not unexpected as this term comes from the
coulombian interaction between the nuclei. Using (4.8) in the matrix element of the transition leads
to:

T0n = − 1

q2

∫
d3~r ei~q·~r (−4πZpe

2) [−ρn(~r )]

= −4πZpe
2

q2

∫
d3~r ρn(~r ) ei~q·~r

= −4πZpe
2

q2
Fn(~q) .

The atomic form factor for the nth excitation state has beed defined here as Fn(~q) =
∫
d3~rρn(~r )ei~q·~r.

The transition probability is closely related to the differential cross section by the so called Fermi’s
golden rule:

dσn
dΩ

=
1

(2π)2}4

T 2
n

c2

vn
v0
|T0n|2 , (4.9)

where Tn = γMc2 and {v0, vn} are the initial and final velocities of the projectile. If the transition
probability calculated is replaced in (4.9), we obtain:

dσn
dΩ

=
4Z2

pe
4

}4c2

T 2
n

q4

vn
v0
|Fn(~q)|2 , (4.10)

and consequently, the total cross section of projectile-atom interaction leading to the nth characteristic
excited state of the material’s atom can be calculated to be:

σn =

[
2Zpe

2Tn
}2c2

]2
vn
v0

∫
4π
dΩ
|Fn(~q)|2

q4
. (4.11)

This expression can be further transformed in a general way, but it is necessary to understand the
behavior of the moment transference ~q and the energy conservation in the collision process, which will
allow us to rewrite the integral of σn in terms of known quantities and the scattering angles. The
atomic energies before and after the collision are E0 and En respectively, and the projectile energies
T0 and Tn. They relate by En −E0 = −(Tn − T0). Both, before and after the collision, the projectile

is regarded as a free particle, and consequently k0,n =
2MT 2

0,n

}2 . The momentum transfer satisfies:

}2q2 = }2|~kn − ~k0|2 = }2

[
(k2

0 − k2
n) + 4k0kn sin

(
θscatt

2

)]
,

where the identity cos(θscatt) = 1− 2 sin
(
θscatt

2

)
was used. From the last expression:

2qdq = 8k0kn sin

(
θscatt

2

)
cos

(
θscatt

2

)
dθscatt

2
⇒ qdq = k0kn sin(θscatt)dθscatt .
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With this, we can write:

vn
v0
dΩ =

vn
v0

sin(θscatt)dθscattdϕscatt

=
vn
v0

qdq

k0kn
dϕscatt

=
vn
v0

qdq(
T0v0Tnvn

}2c4

)dϕscatt
=

}2c4

v2
0

qdq

T0Tn
dϕscatt ,

where the following deduction is used:

pn = }kn = γMvn

Tn = γMc2 =
√
p2
nc

2 +M2c4

dTn
dpn

=
1

2

1√
p2
nc

2 +M2c4
2pnc

2

=
pnc

2

Tn
=
γMvnc

2

γMc2
= vn

⇒ pn =
Tnvn
c2
⇒ kn =

Tnvn
}c2

.

Now we take this calculations to the cross section and perform the integration on ϕscatt using
azymuthal symmetry. This is an approximation, because Fn(~q ) does not need to by symmetric, but
the summation in the stopping power runs only on the energy quantum number n and not in the
angular momentum l and m. Therefore, we obtain the inelastic cross section:

σn = 2π

[
2Zpe

2

}2c2

]2
T 2
n}2c4

v2
0T0Tn

∫ qmax

qmin

dq
|Fn(q)|2

q3

= 2π

[
2Zpe

2

}2c2v0

]2

}2c2Tn
T0

∫ qmax

qmin

dq
|Fn(q)|2

q3

= 2π

[
2Zpe

2

}v0

]2
Tn
T0

∫ qmax

qmin

dq
|Fn(q)|2

q3
.

As can be seen, it is also assumed that Fn does not depend on θscatt, and the integration limits
are given by:

q2 = k2
0 + k2

n − 2k0kn cos(θscatt) =

{
(k0 + kn)2 = q2

max (1)
(k0 − kn)2 = q2

min (2)
, (4.12)

where (1) imples θscatt = π, or that the projectile “bounces” in the atom, scattering in the initial di-
rection, and (2) that θscatt = 0, therefore the charged ion does not deflect upon the incident direction.

Consider N the atomic density, and using that the energetic “jumps” of the atoms are usually
hundreds of eV , and the energy of the projectile is far greater: around millions of eV (MeV ), allows
for the assumption that after an atomic transition, Tn ≈ T0 (small energy transfer or soft collisions).
Therefore, using the statistical definition of stopping power (1.9), we obtain the electronic stopping
power for inelastic collisions:

S(T ) = N
∑
n

(En − E0)σn

= 2πN

[
2Zpe

2

}v0

]2∑
n

(En − E0)

∫ qmax

qmin

dq
|Fn(q)|2

q3
.

Rigorously speaking, qmin,max = qmin,max(n) through kn, but, as we said, Tn ≈ T0, and conse-
quently k2

n = 2MTn
}2 ' k2

m with n 6= m. Then, all the possible values of qmin,max are similar, inviting
us to define an “acceptable” average qmin,max that makes this limits independent of n, allowing the
interchange of the integral symbol with the summation in S(T ). We will return to this “acceptable”
definition the moment we intend to evaluate S(T ) using qmin,max. It is now convenient to continue
with the calculation, interchanging the integral and summation symbols:
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S(T ) = 2πN

[
2Zpe

2

}v0

]2 ∫ qmax

qmin

dq

q3

∑
n

(En − E0)|Fn(q)|2 . (4.13)

This is as far as we can go without specifying the form factor. By definition, it can be developed
using the atomic eigenfunctions as follows:

Fn(q) =

∫
d3~r ei~q·~r ρn(~r ) =

∫
d3~r ei~q·~r

Zt∑
i=1

∫
dZtA δ(~r − ~ri)ϕ∗n(A)ϕ0(A)

=

Zt∑
i=1

∫
dZtAϕ∗n(A)ϕ0(A)

∫
d3~r ei~q·~r δ(~r − ~ri) =

Zt∑
i=1

∫
dZtAϕ∗n(A)ϕ0(A) ei~q·~ri

=

∫
dZtAϕ∗n(A)ϕ0(A)

Zt∑
i=1

ei~q·~ri .

This suggest that it is plausible to think of an operator defined by:

B̂ =

Zt∑
i=1

ei~q·~ri , (4.14)

such that Fn(q) is the corresponding matrix element in the atomic eigenstates basis, Fn(q) = 〈ϕn|B̂|ϕ0〉 =
B̂n0. With this in mind, we make the calculation:

∑
n

(En − E0)|Fn(q)|2 =
∑
n

(En − E0)|B̂n0|2 =
∑
n

(En − E0)B̂†0nB̂n0

=
∑
n

(
B̂†
)

0n

(
EnB̂n0 − B̂n0E0

)
=
∑
n

(
B̂†
)

0n

{
〈ϕn|ĤatB̂n0 − B̂n0Ĥat|ϕ0〉

}
=
∑
n

(
B̂†
)

0n

[
Ĥat, B̂

]
n0

= 〈ϕ0|B̂†
[∑

n

|ϕn〉〈ϕn|

] [
Ĥat, B̂

]
|ϕ0〉

=
(
B̂†
[
Ĥat, B̂

])
00

;

meaning that all the calculation reduces to determine this matrix element. Here, it is understand from
context that [·, ·] is the usual operator commutator. Given Ĥat as in (4.4), it is clear that [B̂, V ] = 0
because they only depend on the electron position operators {~ri}. Therefore, we only need to evaluate
the commutator with the electron’s kinetic energy operator. For this, consider a “nice” test function
ϕ = ϕ(~rk) ∈ C∞:

[
Ĥat, B̂

]
|ϕ〉 = − }2

2me

∑
i

∑
j

[
∇2
j , e

i~q·~ri
]
ϕ(~rk) = − }2

2me

∑
i

∑
j

{
∇2
j

(
ei~q·~riϕ(~rk)

)
− ei~q·~ri∇2

jϕ(~rk)
}

= − }2

2me

∑
i

∑
j

{
�������
ei~q·~ri∇2

jϕ(~rk) + 2iδije
i~q·~ri~q · ∇jϕ(~rk)+

+ϕ(~rk)(−q2)ei~q·~riδij −�������
ei~q·~ri∇2

jϕ(~rk)
}

=
}2

2me

∑
i

∑
j

δije
i~q·~ri

{
q2 − 2i~q · ∇j

}
ϕ(~rk)

=
}2

2me

∑
i

ei~q·~ri
{
q2 − 2i~q · ∇i

}
|ϕ〉 .
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Now that we know the commutator operator, the calculation of its matrix element is straightfor-
ward:

(
B̂†
[
Ĥat, B̂

])
00

=
}2

2me

∑
i

∑
j

〈ϕ0|e−i~q·~rjei~q·~ri
{
q2 − 2i~q · ∇i

}
|ϕ0〉

=
}2

2me

∑
i

∑
j

∫
dZtAei~q·(~ri−~rj)

{
q2ϕ2

0(A)− 2iϕ∗0(A)~q · ∇iϕ0(A)
}

=
}2

2me

∑
i

∑
j

∫
dZtAei~q·(~ri−~rj)

{
q2ϕ2

0(A)− i~q · ∇i
(
ϕ2

0(A)
)}

,

where the fact that the fundamental state can always be choosen to be real, ϕ∗0(A) = ϕ0(A), was used,
together with the calculus identity ∇

(
ϕ2
)

= 2ϕ∇ϕ.

Next step is, perhaps, the most subtle of the whole deduction. We will prove that in the last
expression, if i 6= j, there exists a zero factor making zero the entire matrix element, implying that
only those terms with i = j remains. To check this, we “isolate” one of the integrals (remember that
A = {~r1, · · · , ~rZt}):

∫
dZtAei~q·(~ri−~rj)

{
q2ϕ2

0(A)− i~q · ∇i
(
ϕ2

0(A)
)}

=

=

∫
d3~r1 · · · d3~ri−1d

3~ri+1 · · · d3~rZte
−i~q·~rj

∫
d3~ri e

i~q·~ri
{
q2ϕ2

0(A)− i~q · ∇i
(
ϕ2

0(A)
)}

.

To the ~ri isolated integral, we separate the second term in order to calculate it clearly:

−i
∫
d3~ri e

i~q·~ri~q · ∇iϕ2
0(A) = −i

∫
d3~ri

{
∇i ·

(
~qei~q·~riϕ2

0(A)
)
− ϕ2

0(A)∇i ·
(
ei~q·~ri~q

)}
= −i

∫
∂R3

dS~q · n̂ ei~q·~rϕ2
0(A) + i

∫
d3~riϕ

2
0(A)∇i

(
ei~q·~ri~q

)
= −

∫
d3~ri ϕ

2
0(A) q2 ei~q·~ri .

Here, Gauss theorem was used to move from R3 integral to the boundary at infinity ∂R3, and
being ϕ0 square-integrable, it presents compact support. This makes zero the surface integral term,
because the complex exponential is bounded. The remaining term cancels with the first term of the
~ri isolated integral. This proves that each term with i 6= j is zero. Thereby the matrix element we
seek is of the form:

(
B̂†
[
Ĥat, B̂

])
00

=
}2

2me

Zt∑
i=1

∫
dZtA

[
q2ϕ2

0(A)− i~q · ∇iϕ2
0(A)

]
=

}2

2me

Zt∑
i=1

q2 +
i}2

2me

Zt∑
i=1

∫
dZtA~q · ∇iϕ2

0(A) .

The second term is, again, zero by Gauss theorem:
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∫
dZtA~q · ∇iϕ2

0(A) =

∫
d3~r1 · · · d3~ri−1d

3~ri+1 · · · d3~rZt

∫
d3~ri~q · ∇iϕ2

0(A)

=

∫
d3~r1 · · · d3~ri−1d

3~ri+1 · · · d3~rZt

∫
d3~ri∇i

(
~q · ϕ2

0(A)
)

=

∫
d3~r1 · · · d3~ri−1d

3~ri+1 · · · d3~rZt

∫
∂R3

dS n̂ · ~q ϕ2
0(A)

= 0 .

Then, as q2 does not depend on the index i, we finally obtain that:(
B̂†
[
Ĥat, B̂

])
00

=
Zt}2

2me
q2 =

∑
n

(En − E0)|Fn(q)|2 . (4.15)

This sum resembles the sum rule found on the classical derivation, formula (3.42), which establishes
a connection between the fraction fa of electrons with characteristic classical frequency ωa and the
quantum atomic form factor Fn(~q). More will be said later about this sum rules. Turning back to the
stopping power calculation, what we achieved can be inserted in formula (4.13):

S(T ) = 2πN

[
2Zpe

2

}v0

]2 ∫ qmax

qmin

dq

q3

}2

2me
q2Zt

=
πN

me

[
2Zpe

2

v0

]2

Zt ln

(
qmax
qmin

)
= K0

ρ

At

Z2
pZt

β2
ln

(
qmax
qmin

)
; K0 =

4πNAe
4

mec2
. (4.16)

It is worthwhile to mention the similarity of (4.16) with formula (3.11) but showing the main
issue of the quantum derivation: using the momentum transfer rather than the impact parameter
(experimentally infeasible quantity), to evaluate the energy transfer. Now it is time to evaluate the
averages mentioned before, to determine the integration limits. We already said something about the
momentum transference in (4.12). Then:

qmin = k0 − kn =
p0 − pn

}
= −∆p

}
.

Using that v0 = dT
dp ≈

∆T
∆p = −∆E

∆p with ∆E = En − E0, then ∆p ≈ −∆E
v0

. With this:

qmin =
∆E

}v0
⇒ qmin =

∆E

}v0
=
〈I〉
}v0

. (4.17)

Again, we are capable of identifying this recurrent average in the characteristic energy levels of the
atom. Nevertheless, this is not a rigorously definition of 〈I〉 because this must be defined in order to
interchange the integral with the summation. The corresponding quantum definition of 〈I〉 to fit this
necessity is shown in chapter 6.

On the other hand, qmax is the maximum momentum transfer to the atom by excitation of one of
its electrons. This quantity is already calculated in energy terms such that if M >> me and v0 << c,
εmax ≈ 2mev

2
0. Then:

v0 ≈
εmax
pmax

⇒ pmax ≈
εmax
v0

= 2mev0 , (4.18)

and being pmax = }qmax, then qmax = 2mev0
} 6= qmax(n). This is the inverse of the non-relativistic

approximation of bq1 in section 4.1. With these limits, the stopping power is:
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S(T ) = K0
ρ

At

Z2
pZt

β2
ln

(
2mev

2
0

〈I〉

)
. (4.19)

Several remarks on the quantum stopping power expression should be made:

1. It only consists on the leading logarithmic term, but changing εmax by the corresponding ex-
pression if v0 ∼ c makes the ln(1− β2) term appear.

2. As expected, the factor 2 missing in section 4.1 appears inside the leading term.

3. The quantum mechanics theoretical framework used is not compatible with special relativity.
Therefore, the spin correction term −β2/2 does not appear naturally.

4. The term ln(eγη) is missing, and Bohr establishes a limit with his factor κ = eγη that forces
to use the classical expression (3.47) when η > 1 and (4.19) when η < 1. This comes from the
impact parameter comparison (4.2) because if η < 1, the quantum minimum impact parameter
bq1 is larger than the classical one, and we seem obliged to include quantum modifications. More
information about this will be available when studying the Bloch correction.

5. The mean excitation potential is included, as a necessary condition to carry on with the calcula-
tion. Nothing is said about the formal definition but the complete deduction is shown in chapter
6.
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Chapter 5

High Density Stopping Power

In the case of ideal gases, the problem of energy-loss per pathlength can be understood in a binary
formulation: the projectile interacts with one atom at a time. This is not true in more dense materials,
e.g. solids or liquids. In these cases, the distance |~r | between the projectile and one scattering center
probably contains other elements that might be susceptible to the electromagnetic fields generated
by the charged ion. To put it in alternative description, the projectile might be able to overcome
interaction with more than one scattering center simultaneously, and effects such as polarization of
the material are not negligible. Obviously, a microscopic and individual analysis of each interaction
is unfeasible, becoming the classical electrodynamics the suitable theoretical frame for a macroscopic
treatment.

It will be shown in the following sections, that if the projecile does not have extremely large kinetic
energy (meaning it is not relativistic), the result is essentially the same as quantum stopping power (aca
agregar la fórmula correspondiente) if η < 1. This means that the treatment of dense transporting
media corresponds to a distant collision situation, with the substantial changes appearing in the
relativistic regime. To understand the limits and consequences of the previous models, and aimimg at
generating an intuitive description, a dimensional analysis is mandatory.

5.1 Dimensional analysis of the problem

Let the distance between the projectile and the atom be measured with a vector ~r from the charged
ion to the nucleus of the atom. In every practical situation, the distance from the nucleus to the
electron is negligible compared with |~r |, and therefore it can be said that ~r is also the position of the
electron respect to the projectile.

In the non-relativistic limit |~v| << c, the Lorentz factor is γ ≈ 1, and therefore, Bohr’s adiabatic

radius becomes bmax = γ|~v|
ν ≈ |~v|

ν , where ν is the average characteristic frequency of the atomic
electrons trajectories. It is important to keep in mind that for distances |~r | > bmax the energy
transfer is essentially zero.

On the other hand, a positively charged ion moving with velocity ~v, generates an electromagnetic
field in ~r that can be decomposed spectrally in terms of the frequency ω ∼ |~v |

|~r | , which is the inverse
of the “characteristic time of collision”. The electrons in the different atoms can be excited by the
components of the electromagnetic field of the projectile whose frequency satisfy ω & ν.

It is convenient to define some parameters as shown in figure 5.1. It will be understood by
“interatomic distance” a, the separation length between a neigthbouring pair of atoms as measured
from their nuclei. For the “characteristic atomic dimension” c, it corresponds the distance between
the nucleus and the boundary of the surrounding electron cloud. With this dimensional characteristics
it can be said that a material can be considered as “dense” if a ∼ c, that is, the interatomic distance
is similar to the dimension of the atoms.

43
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Figure 5.1: Simplified and classical scheme of the material scattering centers and the intuitive definition of
the “interatomic distance” a and the “characteristic atomic dimension” c.

Therefore, the intuitive description that is intended to be cleared can be stated as follows: the
charged ion can interact with the atomic electrons if ω ∼ |~v |

|~r | & ν, which means that |~v |ν & |~r |. If

|~r | > a, then the ion “sees” more than one atom simultaneously. This two relations together imply

that |~v |ν � a.
Here comes the key issue of the deduction: if the material is “dense”, then a ∼ c, and then

|~v |
ν � a ∼ c. Therefore, |~v | � cν = vel, that is, the projectile’s velocity must be greater than the

mean orbital velocity vel of the majority of the atomic electrons . In this limit, the dense material can
be treated macroscopically.

5.2 Dense material non-relativistic calculation

We stuck in the limits vel << |~v| << c for the projectile’s velocity, ensuring the macroscopic treatment
condition. We will also assume that the charged ion (Zpe) is heavier than the atomic electrons,
M >> me. Therefore, we will solve the macroscopic Maxwell equation for the electric field, given the
magnetic field does not work:

∇ · ~D = 4πρ ; ∇× ~E = 0 , (5.1)

where the density ρ corresponds only to the projectile, that is ρ = Zpeδ(~r − ~vt). The zero rotational

equation for the electric field implies the existence of a scalar field φ : R3 → R such that ~E = −∇φ.
The spatial derivatives does not affect ε̂, and consequently, using the divergence equation:

∇· ~D = ∇· (ε̂ ~E) = −∇· (ε̂∇φ) = −∇2(ε̂ ~E) = 4πZpeδ(~r−~vt) ⇒ ∇2(ε̂ ~E) = −4πZpeδ(~r−~vt) . (5.2)

This equation can be solved by usual means using Fourier transform in the spatial part:

ε̂φ(~r, t) =
1

(2π)3/2

∫
d3~k(ε̂φ)~k(t) e

i~k·~r ,

δ(~r − ~vt) =
1

(2π)3

∫
d3~k ei

~k·(~r−~vt) ,
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expressions that taken to the equation gives:

− 1

(2π)3/2

∫
d3~k(ε̂φ)~k(t)|~k|

2 ei
~k·~r = −4πZpe

(2π)3

∫
d3~k ei

~k·(~r−~vt) . (5.3)

As always, the orthogonality of the functions {ei~k·~r} allows to isolate an algebraic equation of the
form:

(ε̂φ)~k(t) =
4πZpe

(2π)3/2

1

|~k|2
e−i

~k·~vt . (5.4)

This necessarily implies that φ~k(t) ∝ e
−i~k·~vt, meaning it depends of frequency factors of ω = ~k · ~v.

As explained in section 2.2, Fourier transforming ε̂ results in a multiplying factor ε(~k · ~v)φ~k(t), and
consequently:

φ~k(t) =
4π

(2π)3/2

Zpe

|~k|2
1

ε(~k · ~v)
e−i

~k·~vt . (5.5)

It is important to keep in mind that our starting equations does not use the Maxwell equation
with ∇ × ~H. This equation depends on a source 4π

c
~j = 4π

c Zpe~vδ(~r − ~vt), and given v << c, it can

be neglected. Taking this equation into account, the vacuum field should be substracted from ~E on
calculation. This logically does not modify the energy deposition, but it would have changed the
1/ε(~k · ~v) factor by 1/ε(~k · ~v) − 1, making the integrals to converge. This will be seen clearly when
studying the relativistic case due to Fermi in 1940[13]. Nevertheless, when evaluating the following
integrals, care should be taken of using the correct function. The electric field can be written as:

~E =
1

(2π)3/2

∫
d3~k ~E~k e

i~k·~r ; φ =
1

(2π)3/2

∫
d3~kφ~k e

i~k·~r ,

and since ~E = −∇φ, we have:

1

(2π)3/2

∫
d3~k ~E~k e

i~k·~r = − i

(2π)3/2

∫
d3~kφ~k

~k ei
~k·~r ⇒ ~E~k = −i~kφ~k ,

or, replacing the potential expansion coefficients:

~E = − 4π

(2π)3/2
iZpe

∫
d3~k

~k

|~k|2
1

ε(~k · ~v)
ei
~k·(~r−~vt) . (5.6)

It is worth mentioning the similarity of the procedure respect the distant collision deduction due
to Bohr, where the energy loss is estimated by the amount of work done by the projectile’s field in
the atomic electron. In this case, the field generated inside the material due to the presence of the
projectile is being calculated, and it is capable of generating a force in the present charges at a position
~r. Given the third Newton law, of action-reaction, the projectile must feel (in its own position) a force
of equal intensity that logically will oppose to its displacement, given by ~F = Zpe ~E(~r = ~vt). This
force is then:

~F = − i(Zpe
2)

2π2

∫
d3~k

1

ε(~k · ~v)

~k

|~k|2
.

Choosing the laboratory frame such that the projectiles initial direction of movement is ~v = vî,
the magnitude of the stopping force (the linear stopping power) is:

F = i
(Zpe)

2

2π2

∫
d3~k

1

ε(~k · ~v)

kx

|~k|2
. (5.7)

As stated in section 1.1, this stopping force is nothing more than the stopping power itself. There-
fore, in this case, the magnitude (5.7) is equivalent to writing S(T ) = −Zpe ~E(~r = ~vt) · ~v|~v| . Introducing
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ω = ~k · ~v = kxv, and joining the transversal components of the momentum transfer in a “cylindrical”

variable q =
√
k2
y + k2

z , we have that d3~k = dkxdkydkz = dω
v qdqdϕ. Therefore, we can carry on with

the calculation:

S(T ) = i
(Zpe)

2

2π2

1

v2

∫
dω

∫
qdq

∫
dϕ

ω

(q2 + k2
x)

1

ε(ω)

= i
(Zpe

2)

π

∫
dω

∫
qdq

ω

(v2q2 + ω2)

1

ε(ω)
.

We know that kj ∈ (−∞,∞), with j = x, y, z, and consequently 0 < k2
j < ∞. Then q ∈ [0,∞).

This transversal momentum transfer is asociated with the impact parameter of the projectile as 1
q ∼ b.

If the collision were close (small b), the notion of simultaneous interaction with several scattering
centers is lost. Therefore, to remain in a macroscopic description, there exists a limit b1 such that
b > b1, which implies 1

b1
> 1

b ∼ q. Then, there is a limit in the possible momentum transfer, meaning
there exists q1 such that q < q1. If q > q1, the problem can be treated as a binary collision with a free
electron (close collision approximation). The stopping power with the corresponding limits stands for:

S(T ) = i
(Zpe)

2

π

∫ q1

0
qdq

∫ ∞
−∞

ω

(v2q2 + ω2)ε(ω)
dω .

It is important to keep in mind that, given ω/(v2q2ω2) is an odd function of ω, combining it with
the properties seen in section 2.2:

ω

(v2q2 + ω2)
Re
(

1

ε(ω)

)
is odd ⇒

∫ ∞
−∞

ω

(v2q2 + ω2)
Re
(

1

ε(ω)

)
dω = 0 ,

ω

(v2q2 + ω2)
Im
(

1

ε(ω)

)
is even ⇒

∫ ∞
−∞

ω

(v2q2 + ω2)
Im
(

1

ε(ω)

)
dω = 2

∫ ∞
0

ω

(v2q2 + ω2)
Im
(

1

ε(ω)

)
dω ,

and consequently:

S(T ) = i
(Zpe)

2

π
2i

∫ q1

0
qdq

∫ ∞
0

ω

(v2q2 + ω2)
Im
(

1

ε(ω)

)
dω ,

and combining i2 = −1 and that Im
(

1
ε(ω)

)
< 0 (see section 2.2), finally we obtain:

S(T ) =
2

π
(Zpe)

2

∫ q1

0
qdq

∫ ∞
0

ω

(v2q2 + ω2)

∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω . (5.8)

The q-integral can be performed taking into account that as q ∼ 1
b , then b ∼ 1

q << bmax ≈ v
ν .

This implies that ν
v << q. Therefore, the useful frequencies of the spectral decomposition of the field

are those satisfying ν . ω. Then, ν
v . ω

v and for sufficiently large q (but not greater than the distant
collision limit q1) we have that ω

v < q ⇒ ω
v << q1. Then, using the intuitive change of variables:

u(q) = q2 +
ω2

v2
; du = 2qdq ; u(0) =

ω2

v2
; u(q1) = q2

1 +
ω2

v2
∼ q2

1 ,

and the integral in the transversal momentum transfer is:

∫ q1

0

q

v2q2 + ω2
dq =

1

2v2

∫ q2
1

ω2/v2

du

u
=

1

2v2

{
ln(q2

1)− ln

(
ω2

v2

)}
=

1

v2
ln
(q1v

ω

)
.
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With this, the stopping power is:

S(T ) =
2

π

(
Zpe

v

)2 ∫ ∞
0

ω ln
(q1v

ω

) ∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω . (5.9)

We next define the characteristic mean frequency for the energy transfer as follows:

∫ ∞
0

ω ln
(q1v

ω

) ∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω =

∫ ∞
0

ω ln(q1v)

∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω − ∫ ∞
0

ω ln(ω)

∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω
=

ln(q1v)−

∫∞
0 ω ln(ω)

∣∣∣Im( 1
ε(ω)

)∣∣∣ dω∫∞
0 ω

∣∣∣Im( 1
ε(ω)

)∣∣∣ dω

∫ ∞

0
ω

∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω
= {ln(q1v)− ln(〈ω〉)}

∫ ∞
0

ω

∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω
= ln

(
q1v

〈ω〉

)∫ ∞
0

ω

∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω ,
where:

ln(〈ω〉) =

∫∞
0 ω ln(ω)

∣∣∣Im( 1
ε(ω)

)∣∣∣ dω∫∞
0 ω

∣∣∣Im( 1
ε(ω)

)∣∣∣ dω . (5.10)

Then, the stopping power of a dense material with a momentum transfer not greater than q1

(distant collision) is given by:

Sq<q1(T ) =
2

π

(
Zpe

v

)2

ln

(
q1v

〈ω〉

)∫ ∞
0

ω

∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω . (5.11)

This result is substantially different respect the Bohr and Bethe solutions. Also, this expression
can no longer be transformed in a general way, because some specification needs to be made about
the enery loss function 1/ε(ω).

In section 2.2.3, a general quantification of the electric permittivity at high frequencies is developed.
This can be used to estimate the remaining integral in (5.11) by making some steps backward. Using
the defined parity of the integrand:

∫ ∞
0

ω

∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω = −
∫ ∞

0
ωIm

(
1

ε(ω)

)
dω = i

∫ ∞
0

ω i Im
(

1

ε(ω)

)
dω

=
i

2

∫ ∞
−∞

ω i Im
(

1

ε(ω)

)
dω =

i

2

∫ ∞
−∞

ω

ε(ω)
dω .

In the last expression, it is possible to extend
ω → z ∈ C, using a closed curve in the upper half-
plane, consisting on a real line from −R to R and
a semicircle σR (see figure 5.2), and given 1/ε(z)
has no poles when Im(z) > 0 (see section 2.2.2),
the Cauchy-Goursat theorem ensures that:

0 = lim
R→∞

∮
z

ε(z)
dz . (5.12)

Rewriting this integral, it is easily seen that: Figure 5.2: Complex plane contour for integration.
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0 = lim
R→∞

∮
z

ε(z)
dz = lim

R→∞

∫ R

−R

ω

ε(ω)
dω + lim

R→∞

∫
σR

z

ε(z)
dz

=

∫ ∞
−∞

ω

ε(ω)
dω + lim

R→∞

∫
σR

z

ε(z)
dz

⇒
∫ ∞

0
ω

∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω = − i
2

lim
R→∞

∫
σR

z

ε(z)
dz .

The integral is carried out in a semicircle with very large radius R, then, the high frequency

permittivity ε(ω) → 1 − ω2
p

ω2 can be used. Here it is needed for the integral to converge, to remember
that the electric field in vacuum must be substracted, changing the energy loss function as:

1

ε(ω)
→ 1

ε(ω)
− 1 =

ω2
p

ω2 − ω2
p

∼
ω2
p

ω2
.

With this:

∫
σR

z

ε(z)
dz ∼

∫
σR

zω2
p

z2
dz = ω2

p

∫
σR

dz

z

= ω2
p

∫ π

0

Ri eiθdθ

Reiθ
= iπω2

p ,

and finally:

⇒
∫ ∞

0
ω

∣∣∣∣Im( 1

ε(ω)

)∣∣∣∣ dω = − i
2

lim
R→∞

∫
σR

z

ε(z)
dz =

π

2
ω2
p . (5.13)

With all this, the stopping power formula (5.11) can be rewritten as:

Sq<q1(T ) =
2

π

(
Zpe

v

)2

ln

(
q1v

〈ω〉

)
π

2
ω2
p =

4πNZte
2

me

(
Zpe

v

)2

ln

(
q1v

〈ω〉

)
=

4πNAe
4

mec2

ρ

At

Z2
pZt

β2
ln

(
q1v

〈ω〉

)
= K0

ρ

At

Z2
pZt

β2
ln

(
q1v

〈ω〉

)
.

As can be seen, this expression shares every structural feature with previous stopping power
formulas, with a leading logarithmic term, and depending upon an average frequency. When q > q1,
the macroscopic assumption fails, and the formula given by Bethe (4.16) can be used with qmin = q1:

Sq>q1(T ) = K0
ρ

At

Z2
pZt

β2
ln

(
qmax
q1

)
, (5.14)

and the complete stopping power for dense material can be given:

S(T ) = Sq<q1(T ) + Sq>q1(T ) = K0
ρ

At

Z2
pZt

β2
ln

(
qmaxv

〈ω〉

)
,

and given the assumptions M >> me and v << c, qmax = εmax
}v ≈

2mev
} . This gives the final expression

for the stopping power for dense material in the non-relativistic limit:

S(T ) = K0
ρ

At

Z2
pZt

β2
ln

(
2mev

2

}〈ω〉

)
. (5.15)

A few remarks on this formula:
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1. It presents a different formal definition of the mean excitation potential 〈I〉, given by 〈I〉 = }〈ω〉
where:

ln(〈ω〉) =

∫∞
0 ω ln(ω)

∣∣∣Im( 1
ε(ω)

)∣∣∣ dω∫∞
0 ω

∣∣∣Im( 1
ε(ω)

)∣∣∣ dω , (5.16)

which is dependent on the dispersion relation for the electric permittivity (due to polarization
effects in matter). Further comparisons shed light on the oscillators strength nature, as shown
in section 6.2.

2. It does not present the classical term ln(eγη). Therefore, this is equivalent to the quantum
formulation of the stopping power by Bethe, except for the definition of the mean excitation po-
tential. The real difference will become evident when extending the calculation to the relativistic
regimen.

3. The limit bmax cannot be freely choosen as before, making the term ln(1− β2) appear, because
the calculation is explicitly assuming the non-relativistic limit v << c.

4. The spin correction −β2/2 is also not present.

5.3 Dense material calculation by Fermi
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Chapter 6

Mean excitation potential theory

6.1 Quantum definition

To complete the deduction of Bethe for the stopping power in the quantum mechanical framework, it
is important to define the mean excitation potential 〈I〉. For this, a set of mathematical properties
associated with the atomic hamiltonian and its eigenstates is needed. First, we will explore those
formulations to define, at the end of this section, the mean excitation potential as derived from
quantum mechanics.

Consider the operator B̂ defined by formula (4.14). The assumption that will be made is that of
the dipolar approximation also used in section 3.3. This consisted on considering that the electrons
present small variations in their positions respect the atomic nucleus, in comparison with the impact
parameter b, i.e. |~x| << b. In the quantum theoretical frame, this position is represented by a quantum
operator, therefore speaking of it as “smaller than” is inaccurate. We would need some anchor to
the classical intuition for being able to make comparisons, such as averages or expectation values.
Therefore, it is convenient to remember that the quantum energy transfer was parametrized using the
momentum transfer rather than the impact parameter, and that the distant collisions corresponds
to the soft collisions with small energy transfer. Consequently, q ∼ 0, allowing the following Taylor
representation:

ei~q·~ri = 1 + i~q · ~ri +O(q2) . (6.1)

With this, the matrix elements of B̂ can be written as follows:

B̂n0 =

∫
dZtAϕ∗n(A)

Zt∑
i=1

ei~q·~riϕ0(A)

=

∫
dZtAϕ∗n(A)ϕ0(A)

Zt∑
i=1

1 + i~q ·
Zt∑
i=1

ϕ∗n(A)~riϕ0(A) +O(q2)

= Ztδn,0 + i~q ·
Zt∑
i=1

ϕ∗n(A)~riϕ0(A) +O(q2) .

Now we force the transition, δn,0 = 0, and construct |B̂n0|2:

|B̂n0|2 = B̂†0nB̂n0 =

[
i~q ·

Zt∑
i=1

ϕ∗n(A)~riϕ0(A) +O(q2)

][
−i~q ·

Zt∑
i=1

ϕ∗n(A)~riϕ0(A) +O(q2)

]

=

∣∣∣∣∣~q ·
Zt∑
i=1

∫
dZtA ϕ∗n(A)~riϕ0(A)

∣∣∣∣∣
2

+O(q3) ≈
∣∣∣~q · ~Rn0

∣∣∣2 ,
51
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where ~R =
Zt∑
i=1

~ri, and ~Rn0 = 〈ϕn|~R|ϕ0〉. This is the position operator of the atomic dipolar moment,

~d = −e~R. Taking this to the summation in the atomic energy levels:∑
n

(En − E0)|Fn(~q )|2 =
∑
n

(En − E0)|B̂n0|2 ≈
∑
n

(En − E0)|~q · ~Rn0|2 . (6.2)

Defining the quantities f qn,0 such that:

∑
n

(En − E0)|~q · ~Rn0|2 =
}2

2me

∑
n

f qn,0 ⇒ f qn,0 =
2me

}2
(En − E0)|~q · ~Rn0|2 . (6.3)

This quantities are closely related to the fraction fa of atomic electrons with characteristic fre-
quency ωa defined in the classical calculation of the stopping power, that obeyed the sum rule∑

a fa = Zt. To define the mean excitation potential in a quantum mechanical scheme, we will
need to know the value of

∑
n f

q
n,0. For this, it is useful to choose a coordinate system oriented such

that ~q = qk̂, which helps to simplify the calculations. Therefore:

∑
n

(En − E0)|~q · ~Rn0|2 = q2
∑
n

(En − E0) |Rzn0|
2

= q2
∑
n

(En − E0)

∣∣∣∣∣〈ϕn|
Zt∑
i=1

zi|ϕ0〉

∣∣∣∣∣
2

= q2
∑
n

(En − E0) |〈ϕn|z|ϕ0〉|2 , z =

Zt∑
i=1

zi .

It can be found in almost any quantum mechanics textbook[14, 15, 16], when studying the inter-
action of atoms with electromagnetic fields, the concept of oscillator strengths, which are defined
by:

fn,0 =
2me

}2
(En − E0)

∣∣∣∣∣∣〈n|
∑
j

zj |0〉

∣∣∣∣∣∣
2

, (6.4)

where the index j indexes the summation over the atomic electrons. This quantities satisfy the same
sum rule that their classical counterpart fa, namely

∑
n fn,0 = Zt. The summations are known in

modern literature as Thomas-Reiche-Kuhn sum rules[17]. With them, the calculation of the
summation of f qn,0 is straightforward. The f qn,0 were called by Bethe the generalized oscillator
strengths. We define the total momentum of the electrons as ~p =

∑
j ~pj , such that pz =

∑
j p

z
j .

Then:

[z, pz] =

Zt∑
i=1

Zt∑
j=1

[zi, p
z
j ] = i}

Zt∑
i=1

Zt∑
j=1

δi,j = i}Zt . (6.5)

On the other hand, the atomic hamiltonian can be written as:

Ĥat =

Zt∑
i=1

p2
i

2me
+ V (A) =

p2
x + p2

y + p2
z

2me
+ V (A) , (6.6)

from where it is direct that:

[z, Ĥat] =

[
z,

p2
z

2me

]
=

1

2me
[z, p2

z] =
i}
me

pz , (6.7)
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where the operator relation [x, f(px)] = i}∂f(px)
∂px

[15] was used. With this tools, it can be seen that:

i}Zt = [z, pz] = 〈0|[z, Ĥat]|0〉 =
∑
n

{〈0|z|n〉〈n|pz|0〉 − 〈0|pz|n〉〈n|z|0〉} . (6.8)

The momentum expectation values should be addressed separately, using the properties already
found:

〈n|pz|0〉 =
me

i}
〈n|[z, Ĥat]|0〉

=
me

i}

{
〈n|zĤat|0〉 − 〈n|Ĥatz|0〉

}
=
ime

}
(En − E0)〈n|z|0〉 ,

and with the same procedure, 〈0|pz|n〉 = − ime
} (En − E0)〈0|z|n〉. Then:

i}Zt =
∑
n

{〈0|z|n〉〈n|pz|0〉 − 〈0|pz|n〉〈n|z|0〉}

=
∑
n

{
〈0|z|n〉 ime

}
(En − E0)〈n|z|0〉+

ime

}
(En − E0)〈0|z|n〉〈n|z|0〉

}
=

2ime

}
∑
n

(En − E0) |〈n|z|0〉|2 .

This proves the sum rule we needed, namely:∑
n

fn,0 =
2me

}2

∑
n

(En − E0) |〈n|z|0〉|2 = Zt . (6.9)

Taking this result to (6.3), it is easily obtained the sum rule for the generalized oscillator strengths:

∑
n

f qn,0 =
2me

}2

∑
n

(En − E0)
∣∣∣~q · ~Rn,0∣∣∣2

=
2me

}2
q2
∑
n

(En − E0) |〈n|z|0〉|2

=
2me

}2

}2

2me
Ztq

2 = Ztq
2 .

All of this mathematical developements will be of use when trying to obtain a definition of the
mean excitation potential from the quantum mechanical framework. Lets start from formula (4.13)
before and after interchanging the integral symbol with the summation. On one side we have:∑

n

∫ qmax

qmin

dq

q3
|B̂n0|2(En − E0) =

∑
n

∫ qmax

En−E0
}v0

dq

q3
|B̂n0|2(En − E0) . (6.10)

On the other side:

∑
n

∫ qmax

qmin

dq

q3
|B̂n0|2(En − E0) =

∑
n

∫ qmax

〈I〉
}v0

dq

q3
|B̂n0|2(En − E0) . (6.11)

What we need is that:

∑
n

∫ qmax

qmin

dq

q3
|B̂n0|2(En − E0) =

∑
n

∫ qmax

qmin

dq

q3
|B̂n0|2(En − E0) . (6.12)
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But we already showed that qmax = qmax 6= qmax(n), therefore we may construct the following
integral equation:

∑
n

∫ qmax

En−E0
}v0

dq

q3
|B̂n0|2(En − E0) =

∑
n

∫ qmax

〈I〉
}v0

dq

q3
|B̂n0|2(En − E0)

0 = −
∑
n

∫ qmax

En−E0
}v0

dq

q3
|B̂n0|2(En − E0) +

∑
n

∫ qmax

〈I〉
}v0

dq

q3
|B̂n0|2(En − E0)

=
∑
n

{∫ En−E0
}v0

qmax

dq

q3
|B̂n0|2(En − E0) +

∫ qmax

〈I〉
}v0

dq

q3
|B̂n0|2(En − E0)

}

=
∑
n

∫ En−E0
}v0

〈I〉
}v0

dq

q3
|B̂n0|2(En − E0) .

Then, replacing |B̂n0|2 = |~q · ~Rn0|2 with (6.3) (therefore applying the dipolar approximation), we
have:

0 =
∑
n

∫ En−E0
}v0

〈I〉
}v0

dq

q3

q2
��}2

���2me

fn,0

������
(En − E0) �

�����
(En − E0)

=
∑
n

∫ En−E0
}v0

〈I〉
}v0

dq

q
fn,0

=
∑
n

fn,0

{
ln

(
En − E0

}v0

)
− ln

(
〈I〉
}v0

)}
=
∑
n

fn,0 ln(En − E0)−
∑
n

fn,0 ln(〈I〉) ,

which finally leads to:

ln(〈I〉) =

∑
n
fn,0 ln(En − E0)∑

n
fn,0

. (6.13)

Note the similarity with the classical counterpart (3.45), but the radical change in the conceptual
contents, meaning every magnitude used in the calculation presents essentially different interpretations.
Moreover, the quantum mechanical determination includes the suitable definition of the oscillator
strenghts.

6.2 Polarization effects: energy loss function
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