Chapitre 6: lonisation et excitations

Contenu

- Introduction
- Ionisation dans les gaz
- Ionisation dans les solides
- Facteur de Fano

Introduction (1)

- Les ionisations produites par des particules chargées (particules incidentes ou produites par des rayonnements indirectement ionisants) le long de leur trajectoire jouent un rôle fondamental dans le principe de détection
- Dans les gaz et les liquides → production d'électrons et d'ions positifs suite à l'ionisation des atomes ou molécules (dans la suite → « atomes » pour simplifier)
- Dans certains solides → production d'électrons de conduction et de trous.
- Dans les 2 cas → on parlera de paire d'ions

Introduction (2)

- Les électrons et les ions créés par la particule chargée incidente elle-même sont les ionisations primaires
- Si suffisamment d'énergie est transférée à l'électron → cet électron peut lui aussi créer des paires ion-électron → ces dernières sont appelées les ionisations secondaires

Ionisation et excitation dans les gaz

- L'énergie perdue par une particule chargée traversant un gaz est répartie (essentiellement) entre 2 types d'interaction →
 - 1. L'ionisation \rightarrow un ou plusieurs électrons sont arrachés de l'atome \rightarrow processus possible uniquement si l'énergie transférée est supérieure à l'énergie d'ionisation (section efficace typique pour les gaz nobles $\rightarrow \sigma_i \approx 10^{-16} \text{ cm}^2$)
 - 2. L'excitation \rightarrow l'atome est amenée dans un état excité sans production directe d'une paire d'ions \rightarrow processus résonnant qui exige un transfert d'énergie bien précis (section efficace typique pour les gaz nobles à la résonance $\rightarrow \sigma_{\rm ex} \approx 10^{-17} \, {\rm cm^2}) \rightarrow$ aboutit finalement à une dissipation thermique
- Même si $\sigma_i > \sigma_{\rm ex} \rightarrow$ le processus d'excitation domine le plus souvent car les collisions avec faible transfert d'énergie sont les plus probables et l'énergie d'ionisation est supérieure à l'énergie d'excitation

Énergie moyenne pour 1 paire ion-e

• L'énergie moyenne W dépensée dans le milieu par paire ion-e-formée est le quotient de l'énergie E_{abs} perdue par la particule incidente et du nombre moyen N_i de paires ion-e-formées sur l'ensemble de la trajectoire de la particule \rightarrow

$$W = \frac{E_{abs}}{N_i}$$

- Si la particule incidente est stoppée dans le milieu $\rightarrow E_{abs} = E$, l'énergie cinétique incidente de la particule
- $W > E_i$ (énergie d'ionisation) car une partie de l'énergie est perdue via les excitations (généralement $W \approx 2E_i$)

Détermination de W (1)

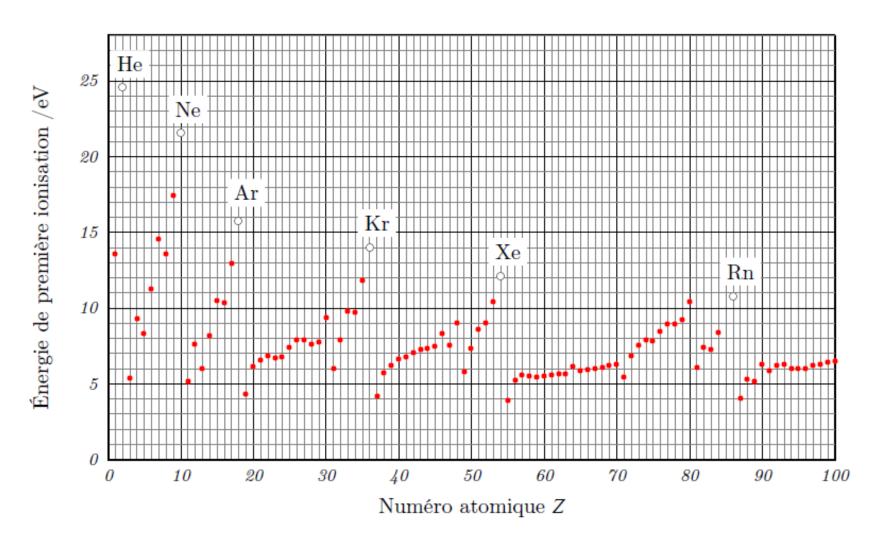
- Le calcul précis de W est un problème très complexe \rightarrow transport dans le gaz de la particule primaire et des particules secondaires -> connaissance nécessaire des sections efficaces de collision pour la particule primaire mais aussi pour les électrons créés → informations généralement pas connues ou incomplètes
- Si la particule chargée est complètement arrêtée dans le gaz →

$$E = N_i \langle E_i \rangle + N_{ex} \langle E_{ex} \rangle + N_i \langle \epsilon \rangle$$

Dans cette expression $\rightarrow N_i$: nombre moyen de paires ion-e produites, N_{ex} : nombre moyen d'excitations produites, E_i : énergie moyenne nécessaire pour créer une ionisation, E_{ex} : énergie moyenne nécessaire pour créer une excitation, ϵ : l'énergie moyenne des électrons dont l'énergie est inférieure à l'énergie d'excitation («subexcitation electrons» \rightarrow électrons de sous-excitation)

Détermination de W(2)

- Les électrons de sous-excitation sont les électrons dont l'énergie est insuffisante pour produire des atomes excités (et donc aussi des ionisations) \rightarrow le nombre de ces électrons est égal au nombre d'ions et donc au nombre de paires ion-e⁻ $(N_i) \rightarrow$ conservation de la charge électrique totale
- Si un électron initialement éjecté d'un atome a suffisamment d'énergie pour ioniser ou exciter un autre atome → il perdra de l'énergie → finalement il deviendra un électrons de sousexcitation
- Ces électrons constituent le courant d'ionisation mesuré (voir plus loin)


Détermination de W(3)

- Tous les termes intervenant dans le calcul de W dépendent de E
- Cependant \rightarrow si $E \gg I \rightarrow$ dépendance faible (I = potentiel d'ionisation = seuil d'ionisation = énergie de première excitation = énergie minimale pour ioniser l'atome)
- Peu de calculs théoriques \rightarrow hélium pour un électron incident par exemple $\rightarrow \langle E_i \rangle = 25.9$ eV, $\langle E_{ex} \rangle = 20.8$ eV, $\langle \epsilon \rangle = 7.6$ eV, W = 41.8 eV (valeur particulièrement élevée pour un gaz) avec 71% des collisions qui sont ionisantes
- En général → W est déterminé expérimentalement
- W dépend peu de la particule incidente
- W recommandé pour de l'air sec \rightarrow W = 33.97 eV
- Bonne approximation en général pour un gaz → W ≈ 30 eV

Exemples de W pour des gaz (mesurés)

Gaz	Énergie d'excitation	Énergie d'ionisation	W_{e}	W_{p}	W_{α}
Не	19.8	24.6	41.3	45.2	42.7
Ne	16.6	21.6	35.4	39.3	
Ar	11.6	15.8	26.4	26.6	26.3
Kr	10.0	14.0	24.4	23	
Xe	8.4	12.1	22.1	20.5	
Air (sec)			33.85	35.2	35.1
N_2	8.1	15.5	30.8	36.6	36.4
O_2	7.9	12.2	32.6		32.24
H_2	10.8	15.4	34.8		36.4
CO_2	10.0	13.7	33.0	34.4	34.2
$\mathrm{CH_4}$			27.3		29.1
$\mathrm{C_4H_{10}}$		10.8	23		
BF ₃					35.7

Énergie de première ionisation

Mélange de gaz (1)

- Lorsqu'on ajoute une faible quantité de certains gaz à un gaz noble → il y a une augmentation importante du nombre d'ionisations créées dans le mélange
- De manière générale → cet effet se produit aux faibles concentrations du gaz ajouté et est d'autant plus important que le potentiel d'ionisation du gaz ajouté est petit par rapport à l'énergie de liaison des premiers états excités du gaz noble
- Dans ce cas → la collision d'un atome excité du gaz noble avec une molécule ajoutée peut conduire à l'ionisation de cette molécule

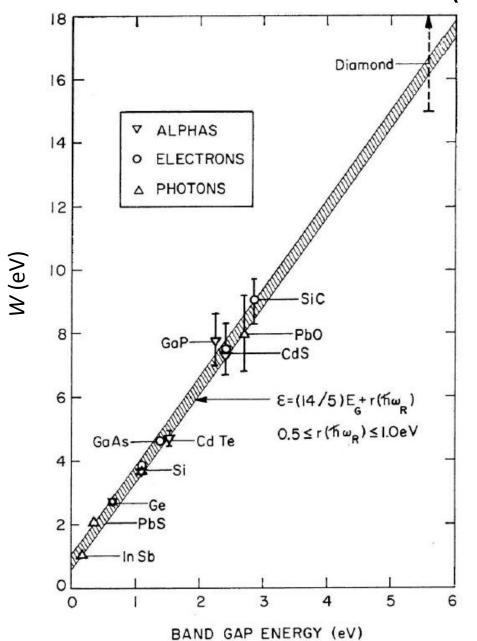
Mélange de gaz (2)

- Exemple: Considérons un gaz d'argon
- L'atome Ar possède une énergie de première ionisation de 15.8
 eV et un niveau excité à 11.6 eV
- On ajoute de l'acétylène qui possède une énergie de première ionisation de 11.2 eV
- Un atome Ar excité peut transférer son énergie d'excitation à une molécule d'acétylène lors d'une collision et donc ioniser la molécule d'acétylène
- Le nombre d'ionisations pour de l'argon auquel on ajoute 0.2% d'acétylène augmente de 25% par rapport à de l'Ar pur

Mélange de gaz (3)

Mélange	W_{α} /eV	Rapport
$Ar + C_2H_6 (3.5\%)$	24.4	1.08
$Ar + C_2H_2 (0.4\%)$	20.4	1.29
$Ar + CH_4 (3\%)$	26.0	1.01
$Ar + C_3H_8 (2\%)$	23.5	1.12
$Ar + C_6H_6 (0.1\%)$	22.4	1.17
$Ar + C_3H_6 (1.2\%)$	23.8	1.11

W et évolution de W pour ≠ mélanges de gaz


Ionisation dans les solides (1)

- Pour les semiconducteurs → le processus d'ionisation implique l'excitation d'un électron de la bande de valence vers la bande de conduction → consiste en la formation d'une paire électrontrou (équivalent de la paire ion-e⁻ pour un gaz)
- Le gap d'énergie E_g entre les deux bandes vaut ≈ 1 eV < le potentiel d'ionisation pour un gaz (~ 10 eV)
- Le processus d'excitation implique l'excitation du réseau cristallin càd la production de phonons → énergie ≈ 0.04 eV
- Environ 60% de l'énergie déposée donne lieu à l'excitation de phonons

Ionisation dans les solides (2)

- Pour le Si $\to W = 3.65 \text{ eV (pour } T = 300 \text{ K)}$
- Pour le Ge \rightarrow W = 2.97 eV (pour T = 77 K)
- Il y a ≈ un rapport 10 entre le nombre de paires produites dans un semiconducteur et dans un gaz
- On constate que W est supérieur à E_g et que W/E_g est environ constant pour tous les semiconducteurs

Ionisation dans les solides (3)

Fluctuations du nombre d'ionisations

- Le nombre d'ionisations est une variable aléatoire dont la valeur moyenne vaut N_i = E/W
- Présence de fluctuations statistiques → limitation de la précision avec laquelle on pourra mesurer E à partir du nombre d'ionisations observées
- La variance σ_i^2 caractérise ces fluctuations \rightarrow 2 cas extrêmes \rightarrow
 - 1. le nombre d'ionisations obéit à la loi de Poisson $\rightarrow \sigma_i^2 = N_i$
 - 2. Une fraction fixe de l'énergie de la particule est convertie en ionisations $\rightarrow \sigma_i^2 = 0$
- La réalité se situe entre les deux →

$$\sigma_i^2 = FN_i$$

avec F, le facteur de Fano $\rightarrow 0 < F < 1$

Facteur de Fano

- F contient toutes les différences entre la réalité et la statistique de Poisson
- F dépend de manière détaillée de la succession des événements qui conduisent à la création de paires
- L'évaluation théorique du facteur de Fano est un problème très difficile (presque impossible) → Le facteur F est toujours obtenu expérimentalement
- Pour le Si \rightarrow F < 0.15
- Pour un gaz noble + gaz ajouté \rightarrow 0.05 < F < 0.20