
PHY 4822  Elementary Particles  
in a Bubble Chamber 

Introduction

Elementary particles are everywhere around us. Apart from the standard matter particles proton, neutron and electron, hundreds of other particles have been found, produced in cosmic ray interactions in the atmosphere or by accelerators. Hundreds of charged particles traverse our bodies per
second, and some will damage our DNA, one of the reasons for the existence of a sophisticated DNA repair mechanism in the cell.

The data for this experiment is in the form of a bubble chamber photograph which shows bubble tracks made by elementary particles as they traverse liquid hydrogen. In the experiment under study, a beam of low-energy negative pions (p- beam) hits a hydrogen (p for proton) target inside the
bubble chamber.  The bubble chamber is essentially a container with liquid hydrogen normally kept just below its boiling point (T=20 K). As the pions enter the detector a piston slightly decompresses the liquid so it becomes ``super-critical'' and starts boiling, and bubbles form, first at the
ionization trails left by the charged particles traversing the liquid. 

   
  

Figure 1: Photograph of the interaction between a high-energy p--meson from the
Berkeley Bevatron accelerator and a proton in a liquid hydrogen bubble chamber, which
produces two neutral particles L0 and K0, which are short-lived and decay into charged

particles a bit further.

 
   

   
   
   
  

Figure 2: Illustration of the interaction, and identification of bubble trails and variables 
 to be measured  in the photograph in Figure 3. 

   
   
   
   
   
  

The reaction shown in Figure 1 shows the production of a pair of neutral particles (that do not  leave a ionized trail in their wake), which after a short while decay into pairs of charged particles:

p- + p ®L0 + K0 ,

where the neutrals decay as follows:

L0 ® p + p- ,       K0 ® p+ + p- .

In this experiment, we assume  the masses of the proton (mp = 938.3 MeV/c2) and the pions (mp + = mp- = 139.4 MeV/c2) to be known precisely, and we shall determine the masses of the L0 and the K0, also in these mass energy units.

Momentum measurement

In order to "reconstruct'' the interaction completely, one uses the conservation laws of (relativistic) momentum and energy, plus the knowledge of the initial pion beam parameters (mass and momentum). In order to measure momenta of the produced charged particles, the bubble chamber is
located inside a magnet that bends the charged particles in helical paths. The 1.5 T magnetic field is directed up out of the photograph. The momentum p of each particle is directly proportional to the radius of curvature r, which in turn can be calculated from a measurement of the "chord
length''  and "sagitta" s as:

r = [l2/(8s)] + [s/2] .

Note, that the above is strictly true only if all momenta are perfectly in the plane of the photograph; in actual experiments stereo photographs of the interaction are taken to be able to reconstruct the interaction in all three dimensions. The interaction in this photograph was specially selected for
its planarity.

In the reproduced photograph the actual radius of curvature R of the track in the bubble chamber is multiplied by the magnification factor m, r = mR. For the reproduction in Figure 3 m = height of photograph (in mm) divided by 173 mm.

The momentum p of the particles is proportional to their radius of curvature R in the chamber. To derive this relationship for relativistic particles we begin with Newton's law in the form:

F = dp/dt = e v×B       (Lorentz   force).

 
 

Here the momentum (p) is the relativistic momentum mvg, where the relativistic g-factor is defined in the usual way

                                g = [Ö(1-v2/c 2)]-1.

Thus, because the speed v is constant:

F = dp/dt = d(mv g)/dt = mg dv/dt = m g (v2/R)(-r) = e v B (-r ) ,

where r is the unit vector in the radial direction. Division by v on both sides of the last equality finally yields:

mgv / R = p / R = e B ,

identical to the non-relativistic result! In atomic units we find: 
  

p c (in eV) = c R B ,    thus    p (in MeV/c) = 2.998×108R B ×10-6 = 300 R(in m) B(in T) (1)

Measurement of angles

Draw straight lines from the point of primary interaction to the points where the L0 and the K0 decay. Extend the lines beyond the decay vertices. Draw tangents to the four decay product tracks at the two vertices. (Take care drawing these tangents, as doing it carelessly is a source of large
errors.) Use a protractor to measure the angles of the decay product tracks relative to the parent directions (use Fig. 3 for measurements and Fig. 2 for definitions).

Analysis

The laws of relativistic kinematics relevant to this calculation are written below. We use the subscripts zero, plus, and minus to refer to the charges of the decaying particles and the decay products. 
  

p+sinq+ = p-sinq- (2)

p0 = p+cosq+ + p-cosq- (3)
E0 = E+ + E-,   

where    E+ = Ö(p+ 
2c2 + m+

2c4) ,    and    E- = Ö (p-
2c2 + m-

2c4)
 

m0c2 = Ö(E0
2 - p0

2c2)  

Note that there is a redundancy here. That is, if p+, p-, q+, and q- are all known, equation (2) is not needed to find m0. In our two-dimensional case we have two equations (2 and 3), and only one unknown quantity m0, and the system is over-determined. This is fortunate, because sometimes (as
here) one of the four measured quantities will have a large experimental error. When this is the case, it is usually advantageous to use only three of the variables and to use equation (2) to calculate the fourth. Alternatively, one may use the over-determination to "fit'' the m0, and to determine it
more precisely.

K0 decay.

1. Measure three of the quantities r+, r-, q+, and q-. Omit the one which you believe would introduce the largest experimental error if used to determine mK.
2. Use the magnification factor m to calculate the actual radii R and equation (1) to calculate the momenta      (in MeV/c) of one or both pions.
3. Use the equations above to determine the rest mass (in MeV/c2) of the K0.
4. Carefully estimate the error in your result from the errors in the measured quantities.

L
0 decay:

1. The proton track is too straight to be well measured in curvature. Also, q+ is small, and the value of mL is quite sensitive to this measurement. Assume that q+ = (0.32±0.05)° (check this with your protractor). Measure r- and q-.
2. Calculate mL and its error the same way as for the K0.
3. Finally, compare your values with the accepted mass values (the world average), and discuss.

 
 

Bonus question: 
 (25%  extra credit) 

 Calculate the momenta for both neutral particles, and hence find their lifetimes, both in the laboratory, and in their own rest-frames. Compare the latter with the accepted values [3]. 
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Figure 3 (Next Page): Photograph of the interaction between a high-energy p--meson from the Berkeley Bevatron accelerator and a proton in a liquid hydrogen bubble chamber. The interaction produces two neutral particles L0 and K0, which are short-lived and decay into charged particles. The
photo covers an area (H�W) of 173 mm � 138 mm of the bubble chamber. In this enlargement the magnification factor g =  (height (in mm) of the photograph)/(173 mm). 

   
   
  

 
 

Note: Experiment adapted from PHY 251 lab at SUNY at Stony Brook (Michael Rijssenbeek) of


