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Collisions and Scattering Theory

1 Two-Particle Collisions in the LAB Frame

Consider the collision of two particles (labeled 1 and 2) of masses m1 and m2, respectively.
Let us denote the velocities of particles 1 and 2 before the collision as u1 and u2, respectively,
while the velocities after the collision are denoted v1 and v2. Furthermore, the particle
momenta before and after the collision are denoted p and q, respectively.

To simplify the analysis, we de¯ne the laboratory (LAB) frame to correspond to the
reference frame in which m2 is at rest (i.e., u2 = 0); in this collision scenario, m1 acts as
the projectile particle and m2 is the target particle. We now write the velocities u1, v1, and
v2 as

u1 = u bx
v1 = v1 (cos µ bx + sin µ by)
v2 = v2 (cos' bx ¡ sin' by)

9>=>; ; (1)

where the de°ection angle µ and the recoil angle ' are de¯ned in the Figure below.

The conservation laws of momentum and energy

m1u1 = m1v1 + m2v2 and
m1

2
u2 =

m1

2
jv1j2 +

m2

2
jv2j2

can be written as

® (u ¡ v1 cos µ) = v2 cos'; (2)

® v1 sin µ = v2 sin'; (3)

® (u2 ¡ v21) = v22; (4)
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where ® = m1=m2 is the ratio of the projectile mass to the target mass.

Since the three equations (2)-(4) are expressed in terms of four unknown quantities
(v1; µ; v2; '), for given incident velocity u and mass ratio ®, we must choose one angle as
an independent variable. Here, we choose the recoil angle ' of the target particle, and
proceed with ¯nding expressions for v1(u; ';®), v2(u; ';®) and µ(u; ';®). First, using the
square of the mometum components (2) and (3), we obtain

®2 v21 = ®2 u2 ¡ 2® uv2 cos' + v22: (5)

Next, using the energy equation (4), we ¯nd

®2 v21 = ®
³
® u2 ¡ v22

´
= ®2 u2 ¡ ® v22; (6)

so that these two equations combine to give

v2(u; ';®) = 2
µ ®

1 + ®

¶
u cos': (7)

Once v2(u;';®) is known and after substituting Eq. (7) into Eq. (6), we ¯nd

v1(u; ';®) = u

r
1 ¡ 4

¹

M
cos2 ' ; (8)

where ¹=M = ®=(1 + ®)2 is the ratio of the reduced mass ¹ and the total mass M .

Lastly, we take the ratio of the momentum components (2) and (3) in order to eliminate
the unknown v1 and ¯nd

tan µ =
v2 sin'

®u ¡ v2 cos'
:

If we substitute Eq. (7), we easily obtain

tan µ =
2 sin ' cos'

1 + ® ¡ 2 cos2 '
;

or

µ(';®) = arctan

Ã
sin 2'

® ¡ cos 2'

!
: (9)

Two interesting limits of Eq. (9) are worth discussing. In the limit ®! 0 (i.e., an in¯nitely
massive target), we ¯nd

' =
1

2
(¼ ¡ µ);

while in the limit ® = 1 (i.e., a collision involving identical particles), we ¯nd

' =
¼

2
¡ µ:

Thus, the angular sum µ + ' for a like-particle collision is always 90 degrees.
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We summarize by stating that, after the collision, the momenta q1 and q2 in the LAB
frame (where m2 is initially at rest) are

q1 = p

"
1 ¡ 4 ®

(1 + ®)2
cos2 '

#1=2
(cos µ bx + sin µ by)

q2 =
2p cos'

1 + ®
(cos' bx ¡ sin ' by)

where p1 = p bx is the initial momentum of particle 1.

2 Two-Particle Collisions in the CM Frame

In the CM frame, the collision between particles 1 and 2 is described quite simply. Before
the collision, the momenta of particles 1 and 2 are equal in magnitude but with opposite
directions

p01 = ¹u bx = ¡ p02;
where ¹ is the reduced mass and a prime now denotes kinematic quantities in the CM
frame.

After the collision, conservation of energy-momentum dictates that

q01 = ¹u (cos£ bx + sin£ by) = ¡ q02;

where £ is the scattering angle in the CM frame and ¹u = p=(1 + ®). Thus the particle
velocities after the collision in the CM frame are

v01 =
q01
m1

=
u

1 +®
(cos£ bx + sin £ by) and v02 = ¡ ® v01:

3



3 Connection between the CM Frame and the LAB

Frame

We now establish the connection between the momenta q1 and q2 in the LAB frame and
the momenta q01 and q

0
2 in the CM frame. First, we denote the velocity of the CM as

w =
m1 u1 +m2 u2
m1 +m2

=
® u

1 + ®
bx;

so that w = jwj = ® u=(1 + ®) and jv02j = w = ® jv01j.

The connection between v01 and v1 is expressed as

v01 = v1 ¡ w !

8><>:
v1 cos µ = w (1 + ®¡1 cos£)

v1 sin µ = w®¡1 sin£

so that

tan µ =
sin£

®+ cos£
;

and
v1 = v01

p
1 + ®2 + 2® cos£;

where v01 = u=(1 + ®).

Likewise, the connection between v02 and v2 is expressed as

v02 = v2 ¡ w !

8><>:
v2 cos' = w (1 ¡ cos£)

v2 sin' = w sin £

4



so that

tan' =
sin£

1¡ cos£ = cot
£

2
! ' =

1

2
(¼ ¡ £);

and

v2 = 2 v02 sin
£

2
;

where v02 = ®u=(1 +®).

4 Scattering Cross Sections

We consider the case of a projectile particle of mass ¹ being de°ected by a repulsive central-
force potential U(r) > 0. As the projectile particle approaches from the right (at r = 1
and µ = 0) moving with speed u, it is progressively de°ected until it reaches a minimum
radius ½ at µ = Â after which the projectile particle moves away from the repulsion center
until it reaches r = 1 at a de°ection angle µ = £ and again moving with speed u. From
the Figure shown below, we can see that the scattering process is symmetric about the line
of closest approach.

The angle of closest approach

Â =
1

2
(¼ ¡£) (10)

is a function of the distance of closest approach ½, the total energy E , and the angular
momentum `. The distance ½ is, of course, a turning point ( _r = 0) and is the only root of
the equation

E0 = U(½) +
`2

2¹½2
; (11)

where E0 = ¹u2=2 is the total initial energy of the projectile particle in the CM frame.
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The path of the projectile particle in the Figure above is labeled by the impact parameter
b (the distance of closest approach in the case of no interaction, U = 0) and a simple
calculation shows that the angular momentum is

` = ¹u b =
q
2¹ E0 b: (12)

It is thus quite clear that ½ is a function of E 0, ¹, and b. Hence, the angle Â is de¯ned in
terms of the standard integral

Â =
Z 1

½

(`=r2) drq
2¹ [E 0 ¡ U(r)] ¡ (`2=r2)

=
Z 1

½

(b=r2) drq
1 ¡ (b2=r2) ¡ U(r)=E0

: (13)

Once an expression £(b; E0) is obtained from Eq. (13), we may invert it to obtain b(£; E 0).

5 Scattering Cross Sections in CM and LAB Frames

The in¯nitesimal cross section d¾0 in the CM frame is de¯ned in terms of b(£; E0) as

d¾ 0(£; E0) = ¼ db2(£; E0):

Using the relation (10), the impact parameter b(£) is thus a function of the de°ection angle
£ (at ¯xed energy) and the di®erential cross section in the CM frame is de¯ned as

¾0(£) =
d¾0

2¼ d(cos£)
=
b(£)

sin£

¯̄̄̄
¯db(£)d£

¯̄̄̄
¯ : (14)

The di®erential cross section can also be written in the LAB frame in terms of the angle
µ as

¾(µ) =
d¾

2¼ d(cos µ)
=
b(µ)

sin µ

¯̄̄̄
¯db(µ)dµ

¯̄̄̄
¯ : (15)

Since the in¯nitesimal cross section d¾ = d¾ 0 is the same in both frames, we ¯nd

¾(µ) sin µ dµ = ¾ 0(£) sin£ d£;

from which we obtain

¾(µ) = ¾0(£)
sin£

sin µ

d£

dµ
; (16)

or

¾0(£) = ¾(µ)
sin µ

sin£

dµ

d£
: (17)

Eq. (16) yields an expression for the di®erential cross section in the LAB frame ¾(µ) once
the di®erential cross section in the CM frame ¾ 0(£) and an explicit formula for £(µ) are
known. Eq. (17) represents the inverse transformation ¾(µ) ! ¾0(£).
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These transformations rely on ¯nding relations between the LAB de°ection angle µ and
the CM de°ection angle £. We found earlier the relation

tan µ =
sin£

®+ cos£
; (18)

where ® = m1=m2, which can be converted into

sin(£ ¡ µ) = ® sin µ: (19)

We now show how to obtain an expression for (sin£= sin µ) d£=dµ by using Eqs. (18) and
(19). First, we use Eq. (19) to obtain

d£

dµ
=
® cos µ + cos(£ ¡ µ)

cos(£ ¡ µ) ; (20)

where

cos(£¡ µ) =
q
1 ¡ ®2 sin2 µ :

Next, using Eq. (18), we show that

sin£

sin µ
=

® +cos£

cosµ
=
® + [cos(£ ¡ µ) cos µ ¡

= ® sin µz }| {
sin(£ ¡ µ) sin µ]

cos µ

=
® (1¡ sin2 µ) + cos(£ ¡ µ) cos µ

cosµ
= ® cos µ +

q
1 ¡ ®2 sin2 µ : (21)

Thus by combining Eqs. (20) and (21), we ¯nd

sin£

sin µ

d£

dµ
=
[® cos µ +

p
1 ¡ ®2 sin2 µ]2p

1 ¡ ®2 sin2 µ
= 2® cos µ +

1+ ®2 cos 2µp
1 ¡ ®2 sin2 µ

; (22)

which is valid for ® < 1. Lastly, noting from Eq. (19)

£(µ) = µ + arcsin(® sin µ );

the transformation ¾0(£) ! ¾(µ) is now complete. Similar manipulations yield the trans-
formation ¾(µ) ! ¾0(£). We note that the LAB-frame cross section ¾(µ) are generally
di±cult to obtain for arbitrary mass ratio ® =m1=m2.

6 Rutherford Scattering

As an explicit example of the formalism of scattering cross section, we now investigate the
scattering of a charged particle of mass m1 and charge q1 by another charged particle of
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mass m2 and charge q2 such that q1 ¢ q2 > 0. This situation leads to the two particles
experiencing a repulsive central force with potential

U(r) =
k

r
;

where k = q1q2=4¼ "0 > 0. The single turning point in this case is the distance of closest
approach

½ = r0 +
q
r20 + b2 = r0 (1 + ²); (23)

where 2 r0 = k=E
0 is the distance of closest approach for a head-on collision (for which the

impact parameter b is zero). The problem of the electrostatic repulsive interaction between
a positively-charged alpha particle (i.e., the nucleus of a Helium atom) and positively-
charged nucleus of a gold atom was ¯rst studied by Rutherford and the scattering cross
section for this problem is known as the Rutherford cross section.

The angle Â at which the distance of closest approach is reached is calculated from
Eq. (13) as

Â =
Z 1

½

(b=r) drp
r2 ¡ 2 r0r ¡ b2

;

which can be converted through the substitution r = r0 (1 + ² secÃ) to the integral

Â(²) =
p
²2 ¡ 1

Z ¼=2

0

dÃ

²+ cosÃ
; (24)

where
b

r0
=

s
2E0`2

¹ k2
=
p
²2 ¡ 1:

By using the integral formula

Z dÃ

² + cosÃ
=

2p
²2 ¡ 1

arctan

0@s ²¡ 1
² + 1

tan(Ã=2)

1A ;
we easily ¯nd

Â = 2 arctan

0@s²¡ 1
²+ 1

1A ;
or

² =
1+ tan2(Â=2)

1¡ tan2(Â=2) =
1

cos2(Â=2) ¡ sin2(Â=2) = sec Â:

Since b=r0 =
p
²2 ¡ 1, we now ¯nd

b

r0
= tan Â: (25)

8



Using the relation (10), we ¯nd

b(£) = r0 cot
£

2
; (26)

and thus db(£)=d£ = ¡ (r0=2) csc2(£=2). The CM cross section is

¾0(£) =
b(£)

sin£

¯̄̄̄
¯db(£)d£

¯̄̄̄
¯ = r20

4 sin4(£=2)
;

or

¾ 0(£) =

Ã
k

4E 0 sin2(£=2)

!2
: (27)

Note that the Rutherford scattering cross section does not depend on the sign of k and
is thus valid for both repulsive and attractive interactions. Moreover, we note that the
Rutherford scattering cross section becomes very large in the forward direction £ ! 0
(where ¾0 ! £¡4) while the di®erential cross section as £! ¼ behaves as ¾0 ! (k=4E0)2.

7 Hard-Sphere and Soft-Sphere Scattering

7.1 Hard-Sphere Scattering

Let us consider the collision of a point-like particle of mass m1 with a hard sphere of mass
m2 and radius R.
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From the Figure above, we see that the impact parameter is

b = R sinÂ; (28)

where Â is the angle of incidence. The angle of re°ection ´ is di®erent from the angle of
incidence Â for the case of arbitrary mass ratio ® = m1=m2. To show this, we decompose
the velocities in terms of components perpendicular and tangential to the surface of the
sphere at the point of impact, i.e., we respectively ¯nd

®u cosÂ = v2 ¡ ®v1 cos ´

® u sinÂ = ® v1 sin ´:

From these expressions we obtain

tan´ =
® u sin Â

v2 ¡ ® u cosÂ
:

From the Figure above, we ¯nd the de°ection angle µ = ¼ ¡ (Â + ´) and the recoil angle
' = Â and thus,

v2 =
µ 2 ®

1 + ®

¶
u cosÂ;

and thus

tan´ =
µ
1 + ®

1¡ ®

¶
tanÂ: (29)

We, therefore, easily see that ´ = Â (the standard form of the Law of Re°ection) only if
® = 0 (i.e., the target particle is in¯nitely massive).

In the CM frame, the collision is symmetric with a de°ection angle Â = 1
2
(¼ ¡ £), so

that

b = R sin Â = R cos
£

2
:

The scattering cross section in the CM frame is

¾(£) =
b(£)

sin£

¯̄̄̄
¯db(£)d£

¯̄̄̄
¯ = R cos(£=2)

sin£
¢
¯̄̄̄
¡ R
2
sin(£=2)

¯̄̄̄
=
R2

4
; (30)

and the total cross section is

¾T = 2¼
Z ¼

0
¾(£) sin £ d£ = ¼R2;

i.e., the total cross section for the problem of hard-sphere collision is equal to the e®ective
area of the sphere.

The scattering cross section in the LAB frame can also be obtained for the case ® < 1
using Eqs. (16) and (22) as

¾(µ) =
R2

4

Ã
2® cos µ +

1+ ®2 cos 2µp
1 ¡ ®2 sin2 µ

!
; (31)
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for ® = m1=m2 < 1. The integration of this formula must yield the total cross section

¾T = 2¼
Z ¼

0
¾(µ) sin µ dµ;

where µmax = ¼ for ® < 1.

7.2 Soft-Sphere Scattering

Let us now consider the scattering of a particle subjected to the following attractive po-
tential

U (r) =

8><>:
¡ U0 for r < R

0 for r > R
(32)

where the constant U0 denotes the depth of the attractive potential well. We denote ¯ the
angle at which the incoming particle enters the soft-sphere potential (see Figure below),
and thus the impact parameter b of the incoming particle is b = R sin¯.

The particle enters the soft-sphere potential region (r < R) and reaches a distance of
closest approach ½, de¯ned from the turning-point condition

E = ¡U0 + E
b2

½2
! ½ =

bq
1 +U0=E

=
R

n
sin¯;

where n =
q
1 + U0=E denotes the index of refraction of the soft-sphere potential region.

From the Figure above, we note that an optical analogy helps us determine that, through
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Snell's law, we ¯nd

sin¯ = n sin
µ
¯ ¡ £

2

¶
; (33)

where the transmission angle ® is given in terms of the incident angle ¯ and the CM
scattering angle ¡£ as £ = 2 (¯ ¡ ®).

The distance of closest approach is reached at an angle Â is determined as

Â = ¯ +
Z R

½

b dr

r
p
n2r2 ¡ b2

= ¯ + arccos

Ã
b

nR

!
¡ arccos

Ã
b

n½

!
| {z }

= 0

= ¯ + arccos

Ã
b

nR

!
=
1

2
(¼ +£); (34)

and, thus, the impact parameter b(£) can be expressed as

b(£) = nR sin
µ
¯(b) ¡ £

2

¶
! b(£) =

nR sin(£=2)q
1 + n2 ¡ 2n cos(£=2)

: (35)

The opposite case of a repulsive soft-sphere potential, where ¡U0 is replaced with U0 in
Eq. (32), is treated by replacing n = (1 + U0=E)

1
2 with n = (1¡ U0=E)¡

1
2 and Eq. (35) is

replaced with

b(£) = n¡1R sin
µ
¯(b) +

£

2

¶
! b(£) =

R sin(£=2)q
1 + n2 ¡ 2n cos(£=2)

; (36)

while Snell's law (33) is replaced with

sin
µ
¯ +

£

2

¶
= n sin¯:
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