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Abstract

The production of positive pions and neutrons by cosmic muons at
underground sites of various depths is investigated. We first test the
equivalent photon method in the particular case of ∆ excitation by the
muon. We find that this method, when it neglects the momentum de-
pendence of the transverse response, reproduces remarkably well the
theoretical muon cross section. This success has lead us to apply the
method to higher energies, where it has not been tested. We evaluate
in this way the production of positive pions in liquid scintillator from
known photo-absorption cross sections. At a shallow depth of 20 meters
our estimate reproduces the measurement. As for the neutron emission,
we include the obvious sources, such as the giant-resonance excitation,
the quasi-deuteron process, the quasi-free pion production as well as neu-
trons emitted following pion capture. Our evaluation underestimates the
number of neutrons produced and finds a too weak dependence on the
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depth. This suggests that secondary neutron production is important at
all depths.

PACS numbers: 25.30.Mr, 25.20.-x, 25.40.Sc

1 Introduction

The passage of a high energy charged particle through matter is an interesting source

of electromagnetic nuclear reactions largely occurring at very small angles. One can

view such processes as produced by the flux of a beam of nearly real equivalent

photons [1],[2],[3]. Though these photons are virtual, their kinematics at small

angles of deviation of the charged particle is so close to that of real photons that

it becomes a good approximation to link the inelastic cross sections for charged

particles to the ones for physical photons with an energy equal to the energy loss.

The nuclear reactions induced by the small angle scattering of charged particles are

of particular importance to the low count rate underground experiments, such as

searches for neutrino oscillations. The reason is that cosmic ray muons traverse the

experimental area and their energy loss produces background neutrons and pions.

It is by no means a trivial matter to obtain reliable estimates for actual yields

of neutrons and pions. The problem is related both to the question of obtaining a

sufficiently reliable estimate for the equivalent photon flux as well as to the problem

of finding appropriate input data. This is the aim of the present investigation which

has been stimulated by the rate of low-energy neutrons observed in an exploration

of background sources in a planned neutrino oscillation experiment. As a quick

estimate has shown, the neutron yield from the low-energy photo-nuclear giant-

resonance excitation, as considered e.g. in Ref. [4], is much too small to explain the

observations, which suggests rather that meson-producing processes are primarily

responsible. Indeed, negative pions are an efficient source of neutrons since most of

them will slow down and stop in the surrounding matter. They are then captured

into orbits of pionic atoms and produce neutron pairs by the quasi-deuteron absorp-

tion process π− + ′d′ → 2n on the central nucleus. The observation of correlated
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neutrons is therefore linked to the yield of negative pions. To confirm this mech-

anism for neutron production we advocated a study of the yield of charged pions.

Negative pions are not directly observable, but positive pions are produced at nearly

the same rate. Their presence would be an indication in favor of this mechanism.

The yield of positive pions has since been directly established experimentally from

the observation of the delayed muon decay from the π+ stopping without strong

interactions [5].

For photons above 300 MeV an efficient way to produce pions is via the ∆

isobar, which appears as a prominent peak in the photo-absorption cross sections. In

view of the importance of the isobar region it is interesting to explore the validity of

various approximations to the flux of equivalent photons there. In this case the isobar

excitation by muons can be calculated without resorting to the equivalent photon

method, and compared to the equivalent photon method in various limits as is done

in Section 2.2, which follow the framework given in Section 2.1. This provides a guide

for the application of this method at higher energies. In Section 3 we evaluate the

π+ production yield by high energy muons utilizing the equivalent photon method.

For this we need the photon partial cross sections for a given multiplicity of π+

which, in turn, leads to the discussion of the assumptions necessary to deduce the

yield of positive pions from experimental data. The somewhat unexpected result of

this study is that pions are produced primarily above the ∆ isobar region, often by

multiple pion production.

2 The equivalent Photon Method

2.1 General Framework

We consider a charged lepton of mass m and initial momentum and energy P, E

scattering on a stationary target of massM . The final lepton momentum and energy

is P’, E ′. The energy and momentum transferred to the nucleus are, respectively,

ν = E − E ′ , q = P−P′ , (1)
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and θ is the laboratory scattering angle between P and P′.

The doubly differential cross section in the laboratory frame is expressed in

terms of the usual structure functions W1,2. Here we adopt the convention used by

Close[6], where they have the dimension [energy]−1.

d2σ

dΩdE ′
=

2α2

Q4

P ′

P
[(Q2 − 2m2)W1 + (2EE ′ −

Q2

2
)W2] , (2)

where Q2 = q2 − ν2. Now we introduce the transverse and longitudinal responses

RT and RL defined by:

W1 =
RT

2
; W2 =

Q4

q4
RL +

Q2

2q2
RT , (3)

so that

d2σ

dΩdE ′
= α2P

′

P

[

4EE ′ −Q2

q4
RL +

4EE ′ + q2 + ν2 − 4m2q2/Q2

2q2Q2
RT

]

. (4)

To the order m2/E2 ≪ 1 we have

Q2 ≡ q2 − ν2 ≡ (P − P ′)2 − ν2 + 4PP ′sin2 θ

2

≃ a2 + 4EE ′(1−
m2

EE ′
−

a2

2EE ′
) sin2 θ

2
, (5)

where

a2 =
m2ν2

PP ′
≃

m2ν2

EE ′
≪ ν2 . (6)

The allowed Q2 values at different incident and transferred energies are shown in

Fig. 1.

To make the link with the photo-absorption cross section, we define the effec-

tive number of photons N(ν) by

dσ

dE ′
=

∫

dΩ
d2σ

dΩdE ′
=

N(ν)σγ(ν)

ν
, (7)

where the photon cross section σγ is related to the transverse response by [7]

σγ(ν) =
2π2α

ν
RT (ν,Q

2 = 0) . (8)
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The simplest level of approximation neglects the longitudinal part of the response

function and also ignores all momentum dependence of the transverse response, i.e.,

RT (ν,Q
2) ∼= RT (ν,Q

2 = 0). In this case the angular integration in Eq. (7) can be

performed using

dQ2 ≡
PP ′dΩ

π
. (9)

It leads to the formula:

N(ν) =
α

π

[

E2 + E ′2

P 2
ln

EE ′ + PP ′ −m2

mν
−

(E + E ′)2

2P 2
ln

(P + P ′)2

(E + E ′)ν
−

P ′

P

]

, (10)

which is nothing else than Eq. (1.7) of Dalitz and Yennie [3] (with the corrected sign

in front of m2).

It is appropriate here to make the link with the commonly used Weizsäcker-

Williams method [8]. Starting with the Eq. (4) we make the same assumptions as

for the derivation of Eq. (10). Moreover, we put E ′/E ≈ 1 (i.e., a small energy loss),

expand for small angles, Q2 ≈ a2 + EE ′θ2, q2 ≈ ν2 + EE ′θ2, and neglect q2 + ν2

with respect to 4EE ′, obtaining

dσ

dE ′
≈

2πα2RT (ν,Q
2 = 0)

ν2

[

ln
1 + E4θ2Max/m

2ν2

1 + E2θ2Max/ν
2

−
θ2Max

θ2Max + ν2m2/E4

]

, (11)

where θMax is a cut-off scattering angle. We also assume that θMax ≫ mν/E2 = a/E

and therefore the effective photon number is

N(ν) ≃
α

π

[

2 ln
θMaxE

2

m(ν2 + θ2MaxE
2)1/2

− 1

]

. (12)

This is now the formula that can be compared to the Weizsäcker-Williams method

[8]:

N(ν) =
α

π

c2

v2

[

2 ln
1.123p

mνbmin
−

v2

c2

]

. (13)

Here v ≃ c is the muon velocity, p its momentum, and bmin is the minimum impact

parameter. Formula (13) is essentially equivalent to our Eq. (12) provided we

identify bmin = 1/EθMax for θMax < ν/E and bmin = 1/ν for θMax > ν/E.

Moreover, Eq. (12) is identical to Eq. (1.7) of Dalitz and Yennie [3] and our

Eq. (10) if we take θMax = ν/E, and assume that ν ≪ E. In fact, the integral
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over dΩ leading to Eq. (10) gets the largest contributions from scattering angles

θ ≤ ν/E and saturates at θ ≃ ν/E , which justifies the identification θMax = ν/E

above, and is compatible with our assumption that that θMax ≫ a/E. Equations

(12) and (13) become therefore equivalent when we take bmin = 1/ν, while Ref.[8]

suggests instead the identification of bmin with the larger of the quantities 1/E or

R, where R is the nuclear radius. The presence of an undetermined parameter bmin

is a serious drawback of the classical Weiszäcker-Williams method, and its absence

makes Eq. (10) attractive.

The real question is whether our assumption that

RT (ν,Q
2 ≤ ν2) ≃ RT (ν,Q

2 = 0) (14)

is justified. To establish this, the following section explores this question for quasi-

elastic ∆ excitation for which the photon number can be calculated exactly, which

allows tests of various approximations.

2.2 Test of the Method for ∆ Resonance Production

2.2.1 Nucleons at rest

The choice of the ∆ resonance is guided by two considerations. First, it is a promi-

nent feature in the photo-absorption cross section. Second, in a given model it is

tractable exactly. It can therefore be used as a test for different approximations

to the equivalent photon method. This study will be done under the assumption

that the ∆ isobar has no width. We also ignore the quadrupole excitation of the ∆

resonance, i.e., we take the longitudinal response to vanish. In a first step we omit

the Fermi motion of the nucleons. It is introduced later with no major change in

the conclusions. With these assumptions the transverse nuclear response per nu-

cleon RT for ∆ resonance excitation has the following form, according to Chanfray

et al. [9]:

RT ≈
2

9
G2

M∗(Q2)
(M∗ −M)2 +Q2

4M2
δ(ν − ν∆ −

Q2

2M
) (15a)
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=
2

9
G2

M∗(Q2)
q2

(M∗ +M)2 +Q2
δ(ν − ν∆ −

Q2

2M
)), (15b)

where ν∆ = (M∗2 −M2)/2M , while M∗ (M) is the ∆ (nucleon) mass and GM∗(Q2)

the N∆ transition form factor. We use GM∗(0) = µ∗[(M∗ + M)/2M ]2 with µ∗ =

2µV = 2× 4.71 n.m., and assume the usual dipole form for its Q2 dependence with

the standard cut-off parameter Λ = 6mπ. The response depends obviously on Q2,

not only because it has magnetic character but also because of the recoil effect. In

addition, there is of course the Q2 dependence coming from the vertex form factor.

Substituting for RT in Eq. (4) (where we have taken RL = 0) we can integrate

over dΩ, alternatively over dQ2, using Eq. (9). Note that since we treat the ∆ as a

sharp state, we cannot use directly the relation (7) between the photon cross section,

σγ(ν), and the differential cross section for muons, dσ/dE ′, to define an effective

photon number N(ν) depending on the energy loss. Indeed, due to recoil effects,

the muon cross section is shifted to a somewhat different energy with respect to

the photon one. The number of equivalent photons can be defined only from the

energy-integrated cross sections, as follows:

Nγ =

∫

dE ′dσ(E ′)/dE ′

∫

dνσγ(ν)/ν
. (16)

Therefore the total cross section for ∆ resonance excitation is needed,and it is ob-

tained by integrating again Eq. (4) over the final energy E ′ (i.e., over the excitation

energy ν). The domain of integration in the (Q2, ν) plane is determined by two

requirements. First, the argument of the δ-function defines the dispersion line

ν =
Q2

2M
+ ν∆ (17)

outside of which the response vanishes (see the full line in Fig. 1). Second, the

kinematical conditions of muon scattering (5) restrict the variation of Q2 between

minimum and maximum values attained at 0◦ and 180◦. It is then easily found that

one has only access to the part of the (Q2, ν) plane lying below the line defined by

ν =
1

2m2

[

−EQ2 + P
√

Q2(Q2 + 4m2)
]

. (18)
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This is illustrated for muons of different energy by the broken curves in Fig. 1.

They rise from 0 to the maximum energy loss νM = E − m which is attained

for Q2
M = 2m(E − m), and then decreases to 0 again at the maximum possible

transfer 4P 2. At lepton energies above the ∆ excitation threshold They intersect

the dispersion line of Eq.(17) twice. The intersection points define the limits of

the domain of integration along this line and therefore determine Q2
min and Q2

max .

These are given by the roots of the equation

Q4(
2E

M
+ 1 +

m2

M2
)− 4Q2

[

P 2 −
ν∆
M

(EM +m2)
]

+ 4m2ν2
∆ = 0 , (19)

which are approximately

Q2
min ≈

m2ν2
∆

E(E − ν∆)

Q2
max ≈

2E(E − ν∆)M

(E +M/2)
. (20)

The value of Q2
min decreases rapidly with increasing energy E as seen in Fig. 1. We

find for example the values 392, 13 and 0.13 (MeV/c)2 for Q2
min for the incident en-

ergies E = 2, 10 and 100 GeV, respectively. The region close to this limit dominates

the integral, since the cross section is sharply peaked at small angles (see Eq. (4)).

For real photons the cross section for a ∆ excitation of negligible width is

σγ(ν) =
2π2α

ν
RT (Q

2 = 0, ν) =
4π2α

9
G2

M∗(Q2 = 0)
(M∗ −M)

2M(M∗ +M)
δ(ν − ν∆). (21)

with its inverse energy-weighted integral

∫

dνσγ(ν)/ν =
4π2α

9

G2
M∗(Q2 = 0)

(M∗ +M)2
. (22)

The equivalent photon number deduced through Eq. (16) from our calculated muon

and photon cross sections is an exact one within the model. It can be compared

with various approximations given by Dalitz and Yennie, in particular Eq. (10)

obtained under the assumption of a momentum independent transverse response.

This expression which is a function of the energy has to be evaluated at the excitation

energy ν∆ of the ∆ isobar by photons. This comparison is summarized in Table 1 for
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muons of different energies. Surprisingly the agreement between our exact photon

number and the one given by the Dalitz-Yennie formula (10) is excellent, well beyond

what is expected from the Q2 dependence of the response. In order to elucidate the

origin of this intriguing agreement we have proceeded in several steps. First, we have

suppressed one obvious source of Q2 dependence of the response in our calculation,

namely that of the magnetic form factor that we now take to be constant. As shown

in Table 1, this has a sizable effect since this suppression increases the muon cross

section by about 30-40 %, destroying the previous agreement.

It is then natural to try to cure this problem by using instead the formula (1.8)

of Dalitz and Yennie [3], appropriate for a magnetic transition with a response

proportional to q2 and no further momentum dependence:

N(ν) =
α

π

E2 + E ′2

P 2
ln

EE ′ + PP ′ −m2

mν
. (23)

It turns out that this approximation is a poor one. It does not reproduce our exact

result even when we use a constant form factor (see Table 2). The reason is that

the response is not only proportional to q2, but there are additional sources of mo-

mentum dependence, as seen in the second form of the response, Eq. (15b). Their

effect is sizable. This is illustrated in Table 2: in line b) we introduce the recoil ef-

fect in the energy conserving δ-function, which produces a momentum dependence.

In line c), instead, we introduce the momentum dependence of the denominator of

Eq. (15b), which acts as a form factor. Both have the effect of reducing the muon

cross section by sizable amounts. Therefore, the expression (23), which in principle

should be more appropriate for a magnetic transition, is in fact a poor approxi-

mation. Eq. (10) (the Dalitz-Yennie ’standard value’), which assumes a constant

response, agrees much better with our result, in particular with the one where the

variation of the form factor is kept. The reason is that the decrease of the form

factor cuts off the large momenta and makes the assumption of a constant response

better which leads to the agreement with formula (10). We have checked this by

exploring the influence of the form factor on the constant term (M∗ −M)2 of the

response in Eq. (15a) and on the Q2 part (see lines b) and c) of Table 3). Notice
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that the first numbers in line a) reproduce those of line a) of Table 1 with a constant

response. While the form factor influence is only moderate on the first part, it is

quite large in the Q2-term, which is strongly suppressed. This makes the approxi-

mation of a constant response a valid one. A good agreement between our value and

the formula (10) is therefore understandable, although such a perfect one is a coin-

cidence depending on the exact value of the cut-off parameter. This is illustrated

by line d) in Table 1 where we have used a larger value Λ = 8mπ . The agreement

remains good although not quite perfect. It is difficult to prove the general validity

of the Dalitz-Yennie formula for other production mechanisms. Consequently, one

cannot give a universal expression for the equivalent photon number, which allows

the derivation of the muon cross section from the photon one with good accuracy. In

the absence of this universal relation and in view of the good agreement provided by

the expression (1.7) of Ref.[3] we have thus used it at all energies and, in particular,

also in the multipion range. The accuracy of such an approximation is obviously

difficult to assess.

2.2.2 Effect of Fermi motion

We investigate now the influence of the Fermi motion of the nucleons. The nuclear

response in the (Q2, ν) plane is no longer restricted by Eq. (17) to the line ν =

Q2/2M +ν∆ (dotted line on Fig. 2), but now falls in a band between the two curves

(the full lines in same figure)

ν± =
1

2M2

[

EF (Q
2 + 2Mν∆)± pF

√

4M2Q2 + (Q2 + 2Mν∆)2
]

, (24)

where pF and EF are the Fermi momentum and energy (EF =
√

M2 + p2F ). They

meet the vertical axis at ν±(0) = (EF ± pF )ν∆/M . Each of them has two intersec-

tions with the kinematical line (18) which limits the accessible part of the (Q2, ν)

plane. The integration domain is thus now a surface delineated by four sections of

curves. In the variable Q2 the abscissæ of the intersection points are defined by the

roots of equations

Q4

[

2(EEF ± PpF )

M2
+ 1 +

m2

M2

]

− 4Q2

[

(PEF ± EpF )
2

M2
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−ν∆
(EEF ∓ PpF +m2)

M

]

+ 4m2ν2
∆ = 0, (25)

which give back Eq. (19) in the limit pF = 0. The corresponding values of ν are

obtained by substitution of the solutions in eqs. (18) or (24).

We have made the estimate with a Fermi momentum of 230 MeV/c, which is a

characteristic value for a light nucleus like carbon and using the analytic expressions

for the response of a Fermi gas given in Ref. [9]. The resulting effect of Fermi motion

on the average photon number Nγ is unimportant at lower lepton energies, and it

represents only a 2.5 % effect at 15 GeV. It becomes non negligible in the region

of 30 GeV and above. The vicinity of the singularity makes the integral sensitive

to the detailed behavior of the integrand and thus to Fermi spreading so that Nγ

deviates somewhat from its free nucleon value. We find, for instance, a decrease of

the photon number by 6, 11, 19 and 27 % at 20, 30, 50 and 100 GeV respectively.

3 Application

We now turn to the application of the equivalent photon method to the production

of pions and neutrons by the cosmic ray muons underground. The muon flux at a

depth d, fd(E), normalized according to
∫

fd(E)dE = 1, can be obtained from the

spectrum on surface as given in Ref. [10], taking into account the energy losses of

muons penetrating to a given depth. In Figure 3 we show the normalized muon flux

for various shallow depths. The corresponding total fluxes (in units of muons per

horizontal area of one m2) are 131 for d = 0, 33 for d=20 m, 12 for d=50 m, and 3.4

for d=100 m. One sees that the muon spectrum hardens with depth; the average

muon energies are increasing and for the considered d values we get 〈E〉 = 5.4, 10.3,

13.5, and 22.4 GeV. At the depth of 500 m the flux is reduced to 0.082 muons/m2

and 〈E〉 = 80 GeV.

By folding the muon flux fd(E) with N(ν), Eq.(10) or alternatively Eq.(12),

we obtain the dimensionless effective number of equivalent photons (per muon) of a
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given energy at a given depth

Nd(ν) =
∫

∞

m+ν
N(ν)fd(E)dE , (26)

In Figure 4 we show the effective photon number Nd(ν) at different depths for

photon energies up to 100 GeV. In preparing the figure we used Eq.(10); the results

for Eq.(12) with θMax = ν/E are, naturally, very similar. Notice that Nd(ν) is at

first approximatively constant as a function of ν. The horizontal part turns into a

steep decrease for ν somewhat less than 〈E〉, where it is cut-off by the decreasing

muon spectrum. As a function of depth the horizontal part of Nd(ν) increases

as ln(〈E〉), as expected. The photon energy where Nd(ν) bends down increases,

however, linearly with the average muon energy 〈E〉. In Figure 4 we used Eq. (10)

for N(ν) even very close the lower integration limit in Eq. (26), where its application

is somewhat suspect, because the corresponding scattering angle is not small. That

region contributes relatively little to the integral, however.

In Section 2.2.1 we have shown that Eq. (10) relates correctly the muon-

nucleus cross section to the photo-nuclear cross section in the ∆ resonance region.

Here we are in a position to justify, at least approximately, its application also in

the higher energy region. According to the standard treatment [10, 11] the muon

energy loss by interaction with nuclei is governed by the formula

dE

dX
= −bnucE , (27)

where bnuc is approximately independent of muon energy, and equal to ≈ 0.5× 10−6

per g/cm2. Using Eq. (10), the photo-absorption cross section in Fig.5 and inte-

grating over the photon energy, we can calculate bnuc. The quantity bnuc calculated

this way is indeed almost independent of the muon energy for 1 GeV ≤ E ≤ 100

GeV (it is very slowly rising, by a factor of less than two), and its magnitude agrees

with the empirical value within its uncertainties.

The reaction cross section in a given exit channel, averaged over the muon

spectrum at a given depth d is obtained by analogy to Eq.(7),

dσ

dν
=

Nd(ν) σγ(ν) br(ν)

ν
, (28)
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where br(ν) is the branching ratio for the corresponding reaction channel, e.g. (γ, n),

(γ, π+), etc.. (If more than one particle of a given kind can be produced, the

branching ratio should also reflect the corresponding multiplicity; see below). The

cross section (28) gives the number of neutrons, π+, etc. produced per muon at the

depth d in the primary reaction. As we pointed out in the introduction, additional

particles, in particular neutrons, can be produced in secondary reactions. Thus, the

yields obtained with Eq.(28) are really lower limits for the neutron production. In

order to apply the formalism we have to substitute in Eq.(28) the corresponding

experimental photo-nuclear cross sections, and branching ratios.

The total photo-absorption cross section which we used is shown in Fig.5.

Since the (γ, n) reaction is the only reaction channel of interest for photon ener-

gies below the pion production threshold, we use this partial cross section at these

energies, and the full cross section above it. The data are from Ref.[12] for the

giant-resonance region and from Ref.[13] above it. The data are smoothed at higher

energies and extrapolated at very high energies.

We first consider the pion production, which can be evaluated more reliably.

For this we require the branching ratio br(ν) for π+ and π− in the ∆ resonance

region ν = 160 - 500 MeV, and in the higher energy region above. In the high

energy region the analysis is simplified by the empirical observation that the photo-

cross section of π+ and π− on a proton is nearly the same as the corresponding one

on a neutron with the opposite charges for the pions. For example, the cross section

for the reaction γ+ p → π+ + π− + p is approximately equal to the cross section for

γ+n → π−+π++n, and similarly for γ+p → π++π0+n and γ+n → π−+π0+p.

This feature follows from isospin invariance if one of the two isospin components is

negligible. This near equality is observed for all pion producing reactions of interest.

This means that we do not need all partial cross sections, and in particular, that for

a carbon target the number of π+ produced is the same one as the number of π−.

Since for photon energies above 1 GeV multipion production becomes impor-
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tant, the proper definition of the branching ratio br(ν) for pions is

br(ν) =

∑

n nσ(nπ
+)

σtot
. (29)

The π− production has the same branching ratio in carbon, as we just pointed out

above.

For photon energies below 1 GeV the reactions γ + p → π+ + n, γ + p →

π+ + π0 + n, and γ + p → π+ + π− + p (and the corresponding ones for the neutron

targets) are known and are the only ones of interest. For photon energies between 1

and 10 GeV we were able to find the data for the proton and deuterium targets only

at a few isolated photon energies [14]. The corresponding branching ratio appears

to be, however, a smooth and relatively slowly increasing function of energy. Thus

we interpolated between the known points. Finally, to extend to even higher photon

energies we extrapolated this smooth trend linearly in the logarithm of the photon

energy. It is encouraging to note that such an extrapolation leads to an average π+

multiplicity of about 2.5 at the photon energy of 100 GeV, in a good agreement with

the measurement of Enikeev et al. [15] for the electromagnetic showers of similar

energy (note, however, that our slope of multiplicity versus energy is less than the

one measured in Ref. [15] at considerably higher energies 100 - 1000 GeV).

Having determined the branching ratio br(ν) for the nucleon targets, we as-

sume that in nuclear targets (in our case in carbon) the same br(ν) is applicable.

Thus the quantity
∑

n nσ(nπ
+) is obtained by multiplying br(ν) for nucleons by the

total photo-absorption cross section for carbon. The dashed curve in Fig. 5 shows

this
∑

n nσ(nπ
+). The rather uncertain cross sections and branching ratios at the

highest energies are, fortunately, not very important for our final results at shallow

depths. This uncertainty, however, prevents us from extending the calculations to

deeper sites.

It is now a simple matter to evaluate the π+ production yield by integrating

Eq. (28) over the virtual photon energy ν. The results are presented in Table 4.

We divide there the contributions to the integral into three energy bins. Column 2

demonstrates that the ∆ resonance contributes relatively little, even at very shallow
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depths. For d= 20 and 100 meters the bulk of the contribution comes from the region

below 10 GeV (column 3), where the multiplicities and cross sections are reasonably

well known. For the largest depth, (d = 500 m) there is a large contribution from

photons of 10-100 GeV and contributions from energies beyond 100 GeV, which are

not included, will increase the total cross section even further.

Since we want to compare our calculated pion yield with the measured one in

a liquid scintillator, we have to take into account the large hydrogen component of

the scintillator (H/C ratio of 1.89). The calculation of the pion yield from the muon

scattering on protons proceeds in a complete analogy with the calculation for carbon

described above. The cross sections and branching ratios are taken from Ref.[14].

and the resulting pion yields are quoted in Table 4 (the entries in parentheses).

In Table 4 we express the π+ yield in the units in which it is usually measured,

i.e., the number of particles per muon and per (g cm−2). To transform the cross

section into such units we have to multiply it by the number of carbon nuclei per

gram of scintillator, NC = 4.3×1022 g−1, and analogously by the number of hydrogen

nuclei per gram, NH = 8.2 × 1022g−1. It is very encouraging to note that our total

yield (i. e. adding the carbon and hydrogen contributions) is 2.95× 10−6 at d = 20

m in agreement within errors with the yield 3.5±0.7×10−6 measured at that depth

in Ref. [5].

According to our calculation the pion yield should increase by a factor of three

when going from d = 20 m to 500 m. The depth dependence has not been measured

for pion production and would constitute a test of the validity of our approach.

The analogous calculation for the total yield of neutrons is much more prob-

lematic, in particular at deeper depths corresponding to high energy photons. The

reason is the importance of neutron production by secondary spallation processes.

We do not treat the secondary processes here, but we comment below on a possible

more complete treatment of the neutron production. First however, since the global

neutron yield is of considerable practical importance to underground physics and

some data exist[5, 15, 16], we give here a crude estimate recalling that the pion

production region, in particular at higher energy, is the most important one.

15



A lower estimate is obtained by using the following assumptions (all assuming

a carbon target): a) in the giant-resonance region region we use the experimental

(γ, n) cross section); b) in the quasi-deuteron region up to the pion threshold we

take the branching ratio to be unity, since mostly both a neutron and a proton

are emitted simultaneously; c) in the region of pion production we assume that by

quasi-free processes there is always a primary branching ratio of 1/2 for neutron

emission (equal number of neutrons and protons), while secondary absorption of

negative pions give an additional branching ratio of 1.8 × nπ−, since stopping π−

gives a neutron pair in 80% and a neutron-proton pair in 20% of the cases. That

is almost certainly an underestimate, particularly for large energy transfers ν for

which a large number of hadrons are emitted in the reaction.

Our corresponding results for the neutron production underground are sum-

marized in Table 5, again divided into energy transfer bins of obvious physical

significance. Even at very shallow depths the giant-resonance and quasi-deuteron

regions contribute relatively little. As was the case of pion production, the asymp-

totic region, with its large uncertainty, appears not to be crucial for shallow depths

(d ≤ 100 m), but it gives a very significant fraction at deeper sites.

As far as comparison with the experiment is concerned two comments can be

made. At d = 20 m in Ref. [5] two values are quoted. The total neutron yield is

(4±0.8)×10−5 n per muon and per (g cm−2). However, when the shower component

(possibly originating from outside the detector) is eliminated, the neutron yield

associated with muons alone is about 2 in the same units (and presumably with a

similar error bar±0.8 as above). Thus, our calculated number of 0.87 underestimates

the neutron production by a factor of two to four, indicating that secondary neutron

production other than by pion capture is non-negligible even at such a shallow depth.

The depth dependence, as quoted in Ref. [16] suggests a fivefold increase at

d = 500 m with a yield of about 2× 10−4 n per muon and per (g cm−2). Our calcu-

lation therefore seriously underestimates the neutron yield at that depth, suggesting

that secondary neutron production becomes crucial.

It is beyond the scope of this work to describe the secondary neutron pro-
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duction, and therefore the total neutron yields, quantitatively. We can, however,

present some qualitative arguments. For bulk targets of heavy elements, the neu-

tron multiplicities for hadron-induced processes at high energies increase linearly

with the incident energy [17]. It is plausible that this linearity holds also for light

elements. Since photons of energy larger than a few GeV have characteristic fea-

tures of hadronic interactions (Vector Meson Dominance) we may suppose that this

linearity applies also in this case. We then apply this statement to the rather light

elements of the detector of Ref. [16] for the part of the photon spectrum above a

certain energy ν0. Below this energy we keep the previous approach, in which the

secondaries only come from pions. Within this framework we can determine the un-

known proportionality constant between the neutron multiplicity and the energy by

fitting the data on neutron production. This requires a multiplicity of 4 to 5 neutrons

per GeV of photon energy above the energy ν0 at which we assume the hadronic

approximation to set in. The first (second) number corresponds to the value of ν0 of

2 (10) GeV. Our considerations, besides giving a lower limit for the neutron yield,

offer a hint of the scenario which might emerge from such a description.

4 Conclusions

In summary we have investigated the production of positive pions and neutrons by

cosmic muons at underground sites of various depths. We have used the equivalent

photon method, the validity of which we have tested in the case of a ∆ isobaric

model. We have made an exact evaluation of both the muon and photon cross

sections in the framework of a specific model for ∆ excitation. We have found that

the equivalent photon method with a Dalitz-Yennie formula for the photon number

reproduces remarkably well the theoretical cross section for the ∆ excitation by

muons, when the momentum dependence of the transverse response is neglected as

well as the longitudinal response. This agreement is somewhat unexpected because

of the momentum dependence of a response of magnetic type. Our investigation

shows that the agreement is to a large part due to the effect of the form factors
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which cut-off the large momenta. This success has lead us to apply the Dalitz-

Yennie formula (10) also in the region of the response where it has not been tested.

We have then used the method to evaluate the production of positive pions

in liquid scintillator from known photo-absorption cross sections. This estimate

requires the knowledge of the branching ratio of the pion channel including the

multiplicity. We find that at a depth of 20 meters our estimate reproduces the

measurement of Ref. [5].

As for the neutron production, we have shown that the low-energy mecha-

nisms (giant-dipole excitation, quasi-deuteron production) are unimportant. Neu-

trons associated with pions appear to be the dominant source. However, using the

information from the neutron production in direct processes together with neutrons

produced from the absorption of stopped negative pions, our conservative estimates

underpredict the experimentally observed neutron yield. This indicates that there

is considerable secondary neutron production in the target environment. The quan-

titative description of such nuclear cascades is a formidable problem. Therefore, the

direct pion production is a much better test of our understanding of cosmic muon

interactions, while the total neutron yield has a direct practical interest as a source

of background at underground sites.
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Table 1: Number Nγ of equivalent photons for ∆ excitation by muons (×100). The
lines correspond to
a) RT = constant, corresponding to the Dalitz-Yennie ’standard value’ Ref. [3]
Eq. (1.7).
b) RT = constant × q2 corresponding to Dalitz-Yennie Eq. (1.8).
c) Full expression for RT with standard cut-off value Λ = 6 mπ.
d) Full expression for RT ; Λ = 8 mπ

e) Full expression for RT ; Λ = ∞ (pointlike vertex).

E 2 5 10 20 50 100
(GeV)

a) 0.93 1.44 1.81 2.16 2.61 2.94
b) 2.05 3.11 3.86 4.56 5.46 6.12
c) 0.90 1.42 1.79 2.15 2.59 2.92
d) 1.00 1.53 1.91 2.27 2.72 3.05
e) 1.38 2.07 2.52 2.93 3.42 3.77

Table 2: Number Nγ of equivalent photons for ∆ excitation by muons (×100). The
lines correspond to
a) RT = constant × q2.
b) RT = constant × q2δ(ν − ν∆ −Q2/2M).
c) RT = constant × q2/[(M∗ +M)2 +Q2].

E 2 5 10 20 50 100
(GeV)

a) 2.05 3.11 3.86 4.56 5.46 6.12
b) 1.45 2.23 2.79 3.31 3.98 4.48
c) 1.68 2.27 2.65 3.01 3.47 3.87
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Table 3: The influence of form factor variation on the photon number for different
parts of the response Eq. (15a). The upper numbers of each entry are calculated
with a constant form factor (Λ = ∞); the second ones in parentheses include the
form factor variation with a cut-off parameter Λ = 6mπ.
a)RT = constant×G∗

M(Q2); the first line reproduces Dalitz-Yennie ‘standard value’.
b) RT = constant × G∗

M(Q2)× δ(ν − ν∆ −Q2/2M).
c) RT = constant × G∗

M(Q2)× Q2 × δ(ν − ν∆ −Q2/2M). Note that adding lines
b) and c) gives back lines c) and e) of Table 1 as it should.

µ energy (GeV) 2 5 10 20 50 100

a) 0.93 1.44 1.81 2.16 2.61 2.94
(0.75) (1.25) (1.61) (1.96) (2.40) (2.73)

b) 0.84 1.36 1.72 2.08 2.52 2.86
(0.71) (1.21) (1.57) (1.92) (2.36) (2.69)

c) 0.54 0.71 0.80 0.85 0.90 0.92
(0.19) (0.21) (0.22) (0.23) (0.23) (0.23)

Table 4: Summary of the π+ production yields in the liquid scintillator (in units of
10−6π+ per muon and per (g cm−2)). First entry in each column is for the carbon
component, and the second entry in parentheses is for the hydrogen component

depth ∆ res. high energy asymptotic total
0 - 0.5 GeV 0.5 - 10 GeV 10 - 100 GeV
C H C H C H C H

20 m 0.62 (0.16) 1.62 (0.34) 0.18 (0.04) 2.42 (0.54)
100 m 0.75 (0.20) 2.30 (0.48) 0.61 (0.12) 3.66 (0.80)
500 m 1.05 (0.27) 3.79 (0.78) 2.22 (0.45) 7.06 (1.50)
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Table 5: Summary of the primary neutron production yields in carbon (in units of
10−6n per muon and per (g cm−2)).

depth giant quasi-deut. ∆ res. high energy asymptotic total
0 - 30 MeV 30 - 150 MeV 0.15 - 0.5 GeV 0.5 - 10 GeV 10 - 100 GeV

20 m 1.0 1.0 2.3 4.0 0.4 8.7
100 m 1.2 1.2 2.8 5.6 1.3 12.1
500 m 1.6 1.6 3.8 9.2 4.6 20.8
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Figure 1: Boundaries of the allowed domain of Q2 vs. ν for different muon energies
(dot-dashed lines). The solid line represents the region of non-vanishing response
for ∆ excitation. The intersections betwen the solid and dot-dashed lines determine
the Q2

min and Q2
max.

Figure 2: Same caption as Fig. 1 with account of Fermi motion. The region of
non-vanishing response now lies between the two solid curves (calculated with pF =
230 MeV/c) which come to coincide with the dispersion line (17) in the limit pF =
0 (dotted curve). There are four intersections betwen the solid and dot-dashed lines
which determine the bounds of the integration region.

Figure 3: Normalized muon flux at different depths.

Figure 4: Effective photon number at different depths according to the dimensionless
definition in Eq. (26), per muon.

Figure 5: Total photoabsorption cross section for carbon (full line) and the weighted
π+ photoproduction cross section

∑

n nσ(nπ
+) (dashed line).
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